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Machine-learning-augmented analysis of textual data: application in
transit disruption management

Peyman Noursalehi, Haris N. Koutsopoulos, Jinhua Zhao
Despite rapid advances in automated text processing, many related tasks in transit and other transportation agencies are

still performed manually. For example, incident management reports are often manually processed and subsequently stored in
a standardized format for later use. The information contained in such reports can be valuable for many reasons: identification of
issues with response actions, underlying causes of each incident, impacts on the system, etc. In this paper, we develop a comprehensive,
pragmatic automated framework for analyzing rail incident reports to support a wide range of applications and functions, depending
on the constraints of the available data. The objectives are twofold: a) extract information that is required in the standard report
forms (automation), and b) extract other useful content and insights from the unstructured text in the original report that would
have otherwise been lost/ignored (knowledge discovery). The approach is demonstrated through a case study involving analysis of
23,728 records of general incidents in the London Underground (LU). The results show that it is possible to automatically extract
delays, impacts on trains, mitigating strategies, underlying incident causes, and insights related to the potential actions and causes,
as well as accurate classification of incidents into predefined categories.

Index Terms—Incidents, Information extraction, Natural Language Processing, Deep Learning, BERT

I. INTRODUCTION

MANY transit agency functions, such as incident or cus-
tomer feedback analysis, still rely on manual process-

ing of information that is often embedded in unstructured text.
Incidents and unexpected events, such as train malfunctions,
station closures due to overcrowding, and signaling problems,
are mainly reported by staff members and operators in a
variety of forms, including handwritten documents and emails.
Textual data collected in this fashion is unstructured, often
filled with the jargon used in a transit agency and might
not be easily accessible to someone lacking such knowledge.
These reports are then manually processed, summarized and
stored in a database of past events, usually in the format
of large spreadsheets. These spreadsheets include predefined
fields that record the main attributes of the incidents. After
the template is filled, the raw text is probably never used
again despite the fact that it includes, as we argue in the
paper, valuable information that can help the agency identify
trends, faults in procedures, and other information (as outlined
in section 2, Table 1). Current, manual approaches are time-
consuming and error-prone, and present a major obstacle when
it comes to identifying and testing new hypotheses about
possible event causes, extracting new attributes, or quickly
evaluating previous decisions and summarizing the lessons
learned. Most importantly, useful information that is embedded
in the incident reports is often lost. For example, while the
textual data contains detail information about the cause of
incidents or the mitigating strategies, the reporting form does
not include a separate field for recording such info. As a result,
the final database does not contain such an information and it
cannot be used for further analysis.
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In this paper, we present a comprehensive methodology
for automated analysis of such reports. It aims at processing
massive historical textual databases where information was
not extracted beforehand. We show that it is possible to
automatically extract delays, impacts on trains, mitigating
strategies, underlying incident causes, and insights related to
the potential actions that could have prevented the incidents,
as well as accurate classification of incidents into predefined
categories. As such, the main focus of the paper is to a)
test the hypothesis that archived unstructured text on inci-
dents contains valuable information that is often lost and
can be used to shape policies and procedures; and b) that
automated methods can be developed to extract this useful
information. In recent years, natural language processing and
text mining techniques have experienced substantial growth
and are currently used to automate knowledge discovery and
information extraction from natural-language documents in
various fields. There has been only a handful of attempts at
automatic information extraction from transportation related
incident reports. (1) used Latent Dirichlet Allocation (LDA) on
railroad equipment accidents reported by the Federal Railroad
Administration, to identify the recurring themes in major
railroad accidents. (2) used LDA to uncover major themes
in rail accidents from 2001 to 2011. (3) propose a bilevel
feature extraction method for classification of fault classes.
(4) proposed a methodology for predicting clearance time, the
period between incident reporting and road clearance, of traffic
incidents in real time, by incorporating information extracted
from incident reports. They categorized 10,000 traffic incident
records into topics using LDA which were subsequently used
as explanatory variables to predict clearance time. Similarly,
(5) classify police logs and incorporate this information into
models to predict the impact of a given traffic incident.
(6) analyzed 17,163 articles published in 22 transportation
journals, identifying research trends over time using topic
modeling. In a related work, (7) analyzed papers from the
Transportation Research Board annual meetings using LDA,
to identify research trends.
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The main approaches used in the above research are based
on statistical methods, such as LDA. The techniques for these
tasks leverage expert knowledge and linguistic properties of
the text. For example, (8) developed hand-coded rules to
automatically analyze construction injury reports, and extract
injury type and the body parts involved in each incident. Such
hand-coded rules, which are often difficult and time consuming
to develop, are an effective way of capturing application-
specific knowledge. (9) provide a comprehensive review of
text mining methods and their applications, and (10) give
an overview of text mining techniques for decision support
applications.

Our paper’s contributions include the following:
1) Developing a comprehensive, pragmatic automated

framework for analyzing rail incident reports to support
a wide range of applications and functions. It includes
a comprehensive suite of methods that work for the
problem, each chosen depending on the constraints of
the available data. For example, when large, labelled
data was available (e.g., fault classification), we used
the state-of-the-art deep learning methods and compared
the accuracy with other methods. In the absence of such
data (i.e., for extracting insights), we use rule-based
approaches.

2) Leveraging pre-trained word embeddings for NER and
document classification tasks

3) Leveraging the dependency graph to extract useful in-
formation. To the best of our knowledge, other related
papers have not used this methodology.

4) Applying the methods to a realistic case study, including
a comprehensive analysis of the implications of the
extracted information, and demonstrate the practical
use and value of the text mining methods for transit
agencies.

The paper is organized as follows. Section II describes the
rule-based and machine learning techniques that are proposed
for information extraction related to transit incidents. Section
III presents a case study, using incident reports from Transport
for London (TfL). It demonstrates how the methods discussed
in section II are used for automated extraction of delays,
insights on how incidents could have been handled more
effectively, impacts of incidents on trains, implemented miti-
gating strategies, and categorization of event causes. Section
IV presents examples of further analysis facilitated by the
initial information extraction tasks. Section V concludes the
paper.

II. METHODS AND PROCEDURES

Figure 1 summarizes the typical information that is of
interest to agencies in dealing with incidents and disrup-
tions. Note that these categories do not aim to provide
comprehensive information about incidents. For example, in
the United Kingdom, the Delay Attribution Guide provides
an extensive summary of the known significant causes of
delays. Here, we focus on a broader categorization of the
incidents instead. Generally, text mining methods fall under
two categories: a) Data-driven b) Knowledge-driven. Data-
driven approaches extract information from text using machine

learning techniques, such as Support Vector Machines (SVM)
(11), Neural Networks (12), or Latent Dirichlet Allocation
(13). A drawback of these methods is the requirement of
having large, often manually annotated datasets in order to
extract useful information. Knowledge-based methods use pre-
defined lexico-syntactic patterns that are extracted by experts
and encode domain knowledge. These patterns, often defined
using regular expressions, are useful when annotated data is
not available, although their development is time-consuming
and requires domain knowledge.

In this paper, we use both, knowledge-based and machine
learning techniques. Figure 2 summarizes the information that
can be extracted from each incident’s report along with the
methods used for each task.

A fundamental step for further analysis of text data is
recognizing the important entities, for example, the location
where the incident occurred. Named entity recognition (NER)
aims to automatically identify named entities and classifying
them into predefined categories, such as train id, station name,
transit line, or any other classes of interest. Traditional NER
methods rely on hand-coded features and hard-coded rules.
However, their use is limited and costly as they need to
be constantly manually updated with new rules, and more
importantly cannot capture the contextual information in a
sentence, which often results in high error rates. Recently, deep
learning-based architectures that use no hard-coded rules have
witnessed significant success for this task (14; 15).

Integral to their success has been learning dense, contextual
representation of tokens. These token embeddings are often
learned from massive corpora of unlabeled data and have
dramatically increased the performance of other downstream
tasks (for example, Google reported improved results for an
estimated 10 percent of search queries). In the sections II-A
and II-B, we briefly describe pre-trained word embeddings and
the state-of-the-art architecture for NER task.

The answers to some of the general questions posed in
Figure 1 are inherently qualitative. For example, the answer
to an inquiry about the underlying cause of an incident
cannot be summarized in a numerical value, nor do we know
a priori the set of possible answers. It consists of natural
language elements that were originally used in the report to
describe the incident. This is where methods that exploit the
statistical characteristics of the text should be used. Topic
modeling techniques are one category of models that have
been developed for this task (section II-C).

A. Word embedding

Word embeddings are dense vector representation of words,
and can capture both the semantic and syntactic information.
Pre-trained embeddings trained from a large unlabeled corpus
in an unsupervised manner have been shown to improve many
downstream tasks (16). The earliest models, word2vec (17)
and GloVe (18) learned static embeddings of each word.
Recently, Transformer-based models (19) have been intro-
duced to learn representations that are dependent on the
particular context of occurrence in a sentence. One such
model is BERT (Bidirectional Encoder Representations from
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Transformers) (20), which has obtained state-of-the-art results
in many applications. There are two strategies to applying
BERT to downstream tasks. One is the feature-based approach,
in which the pre-trained representations are used as input
features to other machine learning models. In this approach,
the term “embedding” refers to the output vector of the final
Transformer layer (21). The other approach is the fine-tuning-
based approach, which trains the downstream models by fine-
tuning pre-trained parameters. In this paper, we adopt the
former approach, in part because it is less computationally
demanding.

B. Bi-LSTM CRF for NER

Figure 3 gives an example of the Bi-LSTM CRF model.
Each sentence is represented as a sequence of tokens, typically
labeled with the BIO (beginning, inside, outside) scheme. For
example, ”Oxford Station” is tagged as ”B-station” and ”I-
station”. Let x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}
denote the input token sequence and their tags, respectively,
where each token xi ∈ Rd is represented by a d-dimensional
vector. A bidirectional Long Short-Term Memory (Bi-LSTM)
(22) then computes two hidden representations ht ∈ RH and
h′t ∈ RH of the sentence, capturing the left and right context
at each word. The final representation is obtained by concate-
nating the two, ĥt = [ht;h

′
t], which now effectively possesses

a representation of a word in context. Then a linear layer on
top of the Bi-LSTM is used to predict the score of each tag
for each word et = tanh(Wĥt). A simple tagging model
could use the computed scores to make predictions on the
labels of each word, by directly applying a softmax function
for example. Such model ignores the dependence between
consecutive tags which is essential in NER tasks. For example,
”I-Station” cannot follow a ”B-train” tag, but the independence
assumption of the previous approach does not prevent such
situations. Therefore, a Conditional Random Field (CRF) is
used to capture such dependencies. Let P ∈ Rn×k be the
scores matrix computed previously, where k is the number of
tags. To capture the dependence among tags, define the tagging
transition matrix T ∈ Rk+2×k+2, where Ti,j represents the
score of transitioning from tag i to tag j. Typically, two
additional tags are added to each sentence to denote the start
and end of sequence, hence T is a square matrix of size k+2.
Following (15), the score of each sentence is defined as

s(x,y) =

n∑
i=0

Tyi,yj
+

n∑
i=1

Pi,yi

The model is trained to maximize the log-probability of the
correct tag sequence:

log(p(y|X)) = s(X,y)− log

 ∑
ỹ∈YX

es(X,ỹ)


where YX are all possible tag sequences. For more details,
the reader is referred to (15).

Fig. 1: Typical questions for analysis of incidents
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C. Topic modeling

Topic modeling, a type of unsupervised learning algorithm,
deals with the problem of automatically organizing and un-
derstanding textual documents. Probabilistic Latent Semantic
Indexing (pLSI) was one of the first attempts at probabilistic
modeling of documents (23; 24), where each document is
assumed to arise from a set of (latent) topics, and each topic
itself is a mixture of words. (13) generalized this model by
adopting a Bayesian approach, introducing a Dirichlet prior
on topic distributions. The resulting model is known as Latent
Dirichlet Allocation (LDA). It has the advantage of producing
results that are usually easily interpretable.

Define document d as a vector of words wd =
{wd,1, . . . , wd,n} where n is the number of distinct words
in the document. We assume that the number of topics K
is known. Each k ∈ K has a distribution over the words
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in the vocabulary, βk, reflecting which words have a higher
probability of occurrence under this topic. Since the words are
discrete, βk is modeled as a multinomial distribution, with a
Dirichlet prior with parameter η. Each document d is generated
using a distribution of the topics in K, specified with another
multinomial distribution θd. The prior distribution for this
per-document topic distribution is specified through another
Dirichlet distribution with parameter α. If α < 1, the model
is biased towards sparsity, i.e. favoring models with just a
few topics. Then the mains steps of the LDA algorithm are
summarized as follows (25):

1) For each topic k, draw a distribution over words βk ∼
Dirichlet(η)

2) For each document d:
a) Draw a vector of topic proportions θd ∼

Dirichlet(α)
b) For each word wd,n:

i) Draw a topic assignment zd,n ∼
Multinomial(θd), zd,nε{1, . . . ,K}

ii) Draw a word wd,n from p(wd,n|zd,n, β),
a multinomial probability distribution condi-
tioned on the topic zn

The number of topics K, as well as hyperparameters η and α
have to be set prior to fitting the LDA model. Several methods
for performing Bayesian inference of an LDA model have been
proposed in the literature, including variational Bayes (13; 26),
Gibbs sampling (27) and expectation propagation (28). For an
overview of these methods, the interested reader is referred to
(29).

D. Document classification

A common task in text mining is to automatically label
documents. The objective is, given a training dataset of (d, c)
where d is a document and c is its label, to learn a mapping
from d to c. Hence, in contrast to topic modeling, this is a
supervised learning task. As an example, consider the problem
of labeling the cause category of incidents (e.g. “Public and
Customers”, “Staff”, “Fleet”, etc.) based on their incident
report. Applications include automatically labeling a database
of old incident reports, and labeling a newly submitted report
in real-time. Section III-F presents such an application.

III. APPLICATION

Transport for London (TfL) stores incident reports along
with numerous categorized information associated with each
one. For this case study, we use 23,728 incidents from January
till mid-October 2016. This large database illustrates the need
for efficient, automatic information extraction. Each incident is
manually reported in an unstructured natural language text for-
mat and manually processed to populate standard predefined
fields: service line, date, delay duration, and cause category.
Fields are often not properly filled, even though the report
contains relevant information. Incidents are then manually as-
signed to one of the predefined categories, such as “Customers
and Public”, “Staff”, “Fleet”, etc., and stored under the field
“Cause Category”. In this paper, we use the incident text

Fig. 4: Example of an annotated report

description not only to automatically extract information to fill
predefined fields, such as those mentioned above, but also to
extract novel information that is not currently being explicitly
captured. We focus on factors causing and contributing to a
disruption, the actions that were taken to alleviate it, as well
as the impact on the system and its major actors. As incident
reports are usually filled out by the staff member at the scene,
they sometimes include insights and recommendations that are
not available through other means and are often lost. We also
explore the potential of text mining methods to automatically
extract such insights.

A. Preprocessing

Preprocessing techniques ensure a standardized text repre-
sentation, which can significantly improve the performance of
text mining tasks. We used TextBlob (30) package for spelling
correction. Then, all the words were converted to lower
case, and punctuations were removed. Further preprocessing
is needed prior to the application of LDA, as described in
section II-C. Stop words and numbers from the incident reports
were removed and the text was tokenized into sentences. To
reduce redundancy and gain more informative topics, words
were stemmed prior to the analysis, i.e. different forms of the
same word were consolidated into a single word. For example,
“canceled”, “cancel” and “cancellation” are all reduced to
“cancel”.

1) Annotating data
The NER model described in section II-B requires annotated

data. We used the open-source software Doccano to manually
annotate the following entities: train id, station, and delay
duration. Figure 4 shows an example of an annotated (trun-
cated) incident report. For the NER task, we post processed
the annotations to be in the BIO format.

B. Impact on the passengers and trains

1) Delay duration
An important metric to understand the consequence of an

incident is the subsequent delay. We selected 75 percent of
the data for training and 25 for testing the model. We used
BERT-base model for obtaining word embeddings, where each
word is represented as a vector of size 768. The LSTM layers
each have 32 hidden units. To assess the prediction accuracy,
we used the precision, recall, and F1 score metrics, defined
as:

Precision = P =
true positives

true positives + false positives

Recall = R =
true positives

true positives + false negatives

F1 =
2PR

P +R
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TABLE I: Prediction accuracy for NER

Bi-LSTM CRF
Category Precision Recall F1
Train id 0.92 0.95 0.94
Station 0.89 0.88 0.88
Delay 0.93 0.95 0.94

TABLE II: Discrepancies between recorded and extracted
delay duration

Text Manually Recorded Automatically
Extracted

Possible reason
for discrepancy

“a delay of 16 minutes recorded” 6 16 Manual entry error
“3 min delay minus dwell time resulting in 2 mins.” 2 3 Further numerical modifications

“2 mins delay. ... attribution is 0 mins” 0 2 later attribution
“An initial delay of 107 minutes resulted

with the Jubilee service suspended in consequence” 4 107 Likely manual entry error

F1 is the harmonic mean of the precision and recall. It assumes
values between zero and one, and is the most frequently used
metric in practice (31). Table I shows the prediction accuracy
of the Bi-LSTM CRF model for each of the categories over
the test set.

There are 149 instances in the test set where the recorded
delay is zero or null, while the corresponding raw text in the
report indicates otherwise. These represent cases where delay
information was present in the original text but not previously
recorded. There are 434 cases where the extracted and reported
delays differ. Table II shows a few representative cases, along
with the possible explanation for each one. Note that in the
majority of cases the discrepancies are caused by incorrect
manual reporting, which the proposed algorithm rectifies.

2) Impact on trains
Incident reports usually contain information about the trains

that were affected, and actions that were subsequently taken
to address the problem. For example, a report might contain
the sentence “ . . . t402 was canceled due to. . . ”. It expresses
the impact (“canceled”) on a specific train (t402). In these
cases, simple regular expressions are not effective, because
such relationships are often expressed in a long-distance form,
with several phrases in-between the verb and subject that are
non-essential (e.g. “t402 which was traveling from station
A to B, was canceled”). For tasks of this kind, standard
methods exploit the grammatical features of the sentences
to capture such long-distance dependencies. In our case, we
exploit the fact that the subject of the impact (i.e. “canceled”)
is a train. The following rule was used for detecting impacts
on a train: if “train” is the passive nominal subject (nsubjpass)
of a past tense verb (VBD), then that verb describes the
impact, and the numerical modifier (nummod) is the train
number. “nsubjpass”, “nummod”, and “VBD” are based on the
Stanford typed dependencies representation (32), which tries
to standardize grammatical representations of words. Figure 5
illustrates this through an example. Here, the extracted relation
is (“402”, “delayed”). The Stanford CoreNLP library (33), a
set of natural language analysis tools, is used for generating
the dependency tree, which represents grammatical relations
between words in a sentence. Figure 6 summarizes the results
of the analysis, illustrating the most frequent impacts. As
expected, the most common impact is “delay”. Often, trains are
canceled, held, or withdrawn. Note that a few of the extracted

Fig. 5: Example of syntactic structure of a sentence which
represents the impact of an incident on a train
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Fig. 6: Most frequent impact of incidents on trains

impacts overlap. For example, “withdrawn” and “taken out”
both refer to the same action, but expressed differently.

C. Mitigating strategies

Operators deploy various strategies to deal with disruptions
and mitigate their impacts. (34) present a comprehensive
review of these strategies in the London Underground. They
identified cancellation, short-turning, holding, renumbering,
skipping stations (non-stopping), reversing and diverting direc-
tion, and withdrawing trains as the most common strategies.
It is useful to extract from the reports the strategies that were
used, as it can inform future approaches of how disruptions
are handled. We used simple regular expressions to search
reports for the aforementioned strategies. Table III shows
the frequencies of each strategy, as extracted from the text.
As expected, the most common strategy is cancellation and
withdrawal from service. Renumbering is mentioned only in
44 incidents, despite the fact that it is a very common strategy
at TfL. This suggests that such actions are typically not
recorded. There might be two possible explanations for this.
One is that renumbering happens so frequently that it is not
deemed noteworthy to record them, or is implied from the
context of the report. It also could be that it is applied in
combination with other strategies.

TABLE III: Frequency of employed control strategies

Strategy Frequency
Cancelled 4086
Withdrawn 1558
Diverted 992
Reversed 977

Non-stopped 479
Hold 346

Renumbered 44
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TABLE IV: Regular expression for extracting insights from
text

Regular expression
(.*(?:\bif\b|\bhad\b)).*(?:(would|could) have been

(?:prevented|minimized|minimised|avoided))
(.*(would|could)have been.* (but|if))

TABLE V: Examples of extracted insights

“. . . also note, that this incident could have been significantly reduced if
LU staff were allowed to access the track.”

“The delay could have been avoided if
staff reported this as soon as it was found.”
“The delay could have been minimised if

... reporting the fault had informed the relieving driver.”
“The initial problem of ... would have been rectified if

the correct procedure had been followed.”

D. Insights

Incidents are often reported by the staff members who dealt
with them first. As such, their reports sometimes contain their
opinions or judgments about the causes of the incidents, or the
procedures which would have prevented them from happening.
Such comments can provide invaluable insights for future
disruption management decision making. We identified two
common patterns in which these insights are expressed and
encoded them as a regular expression (Table IV). They are
based on the observation that insights are typically expressed
through sentences such as “would have been avoided if . . . ”,
or “had . . . could have been prevented”. Overall, 27 sentences
were extracted. All were classified as true insights after
manual examination. Table V shows a few examples. The
most common thread among the uncovered insights is the
insufficient sharing of information among staff.

E. Contributing factors

Typically, incidents are organized under broad categories,
such as “Customers and Public”, “Signals”, “Fleet”, etc. These
predefined categories, however, are restrictive and do not lend
themselves to more detailed analysis. We cast discovering
contributing factors as a topic modeling problem. We use
LDA for extracting and understanding the events that cause
disruptions in the system. As mentioned in section II-C, the
number of topics, and values of the hyperparameters α and
η are specified prior to analysis. In this study, we set the
number of topics K=20. The number was chosen empirically,
based on a) our understanding of the data b) interpretability
of the resultant topics c) clear separation of significant words
within each topic. We set α = 0.1 to ensure a sparse topic
distribution. η is set to 0.01. This relatively small value for
hyperparameter η is expected to result in the discovery of
fine-grained topics, i.e. each topic is a mixture of only a few
words.

In this section, we focus on incidents categorized as “Cus-
tomers & Public” and “Staff”, which represent the two most
frequent categories. There are 5002 and 6406 incidents under
these two categories, respectively. The vocabulary size is
1607 words for “Customers & Public” and 1729 for “Staff”
reports, occurring a total of 20611 and 27204 times, respec-
tively. Table VI summarizes the inferred topics for each of

TABLE VI: Extracted topics and their interpretation as con-
tributing factors

Topic “Customers and public” “Staff”
1 PEA Operator not available (ONA)
2 Trespassing Rear cab door open
3 Passenger emergency alarm Wrong Signal Lowered

4
Doors failing to close,

loss of door closed visual (DCV) Short-notice staff sickness

5 Soiled car, vomit Becoming front tripped. Speed control
6 Passenger requiring staff assistance. Train Operator not in position
7 Platform Train Interface incident (PTI) Failed to gain a door closed visual
8 Customer action (e.g. stuck between doors) Personal Needs Relief (PNR)

9
Operator contacted service control for

assistance and advice Train operator not available

10 Passenger illness All spare operators were being utilized
11 Service gap (delay recorded) Operator late for duty
12 Retrieve items from track, mainly cellphones Signal passed at danger

13
Train delayed berthing into platform due to

customer service supervisor request Service Operator failing to clear signal

14 Vomit, broken window No forward movement

15
General train movement
(departure, arrival, etc.) Traction current being switched off

16 Overcrowding Awaiting train operator, PNR
17 Customer falling ill, collapsing, fainting Staff shortage
18 Sensitive Door Edge (SDE) activation. Staff error
19 Offensive graffiti in the car cabin Insufficient cover

20
Customer altercation on train,

refusing to leave ONA was not forecasted

the two categories. It is important to note that the lexical
differences between reports do not necessarily correspond to
independent topics. For example, for ”Customers and Public”,
both topic one and three capture incidents due to activation
of the passenger emergency alarm. However, in one set of
documents, the acronym (pea) is used instead of the complete
form. Hence, topics that are closely related can be merged
into one. In Table VI, we report the results as inferred by the
LDA method without any post processing to merge related
topics. In practice, a simple step would be to re-categorize
topics that are expressed differently in the text but refer to the
same contributing factor, hence unifying the related factors.
Note that this issue would not be resolved by reducing K,
the number of topics, since these two are still significantly
different in terms of important words.

F. Automatic incident classification

We describe the application of supervised machine learning
techniques to automatically assign incident reports to one
of the predefined categories. These categories are manually
assigned to each incident, classifying it under the appropriate
broad category. We maintain the 5 most frequent categories,
and group every other category under “Other”. As shown
in Table VII, there is a class imbalance as some categories
are more frequent than the others. If not accounted for, the
model would achieve high overall prediction accuracy even if
it performs poorly on the infrequent categories. We therefore
change our loss function to account for this class imbalance.
Let yic = I(yi = c) be the one-hot encoding of yi. Then the
weighted negative log likelihood loss function is defined as

L = − 1

N

N∑
i=1

C∑
c=1

wcyic log p̂(yc|x) (1)

where the weight of class c, wc, is the size of largest class
divided by the size of class c, and p̂(yc|x) is the predicted
probability of class c. This loss function penalizes the model
more for performing poorly on classes with lower observed
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Fig. 7: Deep neural network architecture for text classification
(resnet)

TABLE VII: Frequency of incidents, by category

Category and Public Frequency
Customers and Public 5002

Fleet 5577
Signals 1505

Staff 6406
Station 3115
Other 2123

frequency. We use two approaches for converting the text
data into numerical features: tf-idf weighting scheme, and
pre-trained word embeddings trained on large corpora. For
the latter, we use the BERT-base model weights (20). In this
approach, the embedding weights are kept frozen and only the
classifier model is trained. We hypothesis that this feature-
based transfer learning can improve the prediction accuracy
over the tf-idf approach, since it can leverage the latent
contextual word representations learned from massive corpora.
The deep learning model architecture (resnet) is shown in
Figure 7. First, each sentence in an incident report is encoded
using BERT. Then it passes through 5 layers of 1-dimensional
convolutional layers with residual connections, progressively
capturing and learning the local dependencies between words.
Finally, the output is passed to two fully connected dense neu-
ral layers each with 128 units, and the final class probabilities
are computed using the Softmax function. The network was
implemented in PyTorch (35), and we used the HuggingFace
library (36) to obtain pre-trained BERT models in PyTorch.
We used logistic regression (lr) to benchmark the performance
resnet model.

We randomly selected 75 percent of the data for training
and 25 for testing the model. We further used three-fold
cross validation for estimating the model from the training
set. Table VIII summarizes the performance of the models. It

TABLE VIII: Classification accuracy
BERT-resnet BERT-lr tf-idf resnet tf-idf lr

Category Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
All categories 0.86 0.87 0.87 0.79 0.80 0.79 0.79 0.78 0.78 0.73 0.71 0.71

Customers and Public 0.88 0.90 0.89 0.84 0.79 0.81 0.86 0.75 0.80 0.74 0.76 0.75
Fleet 0.87 0.91 0.89 0.76 0.86 0.81 0.80 0.80 0.80 0.76 0.71 0.73

Signals 0.79 0.74 0.76 0.68 0.68 0.68 0.60 0.78 0.68 0.45 0.59 0.51
Staff 0.89 0.90 0.89 0.81 0.83 0.82 0.84 0.78 0.81 0.81 0.70 0.75

Station infrastructure 0.89 0.95 0.92 0.86 0.94 0.90 0.87 0.93 0.90 0.90 0.82 0.85
Other 0.75 0.54 0.63 0.69 0.42 0.52 0.48 0.55 0.51 0.35 0.49 0.41

shows that using pre-trained BERT embeddings significantly
improved the prediction accuracy for both the deep learning
(resnet) and logistic regression models. Overall, the resnet
model provides the most accurate predictions. All models
perform relatively poorly on the incidents labeled as ”Other”.
A possible explanation for this is that, since we grouped all the
low-frequency categories under this label, the texts are highly
heterogeneous compared to the other five categories.

IV. FURTHER ANALYSIS

The previous sections described the information that can
be extracted from raw incident reports. The new information
can augment the incident database with additional structured
fields. As such, it can facilitate the more detailed analysis of
incidents. For example, since the methodology to extract the
impact of incidents on trains also records the train number
associated with the incident, we can analyze how specific
trains were affected. Figures 8a and 8b show the frequency
with which each train was canceled or delayed, grouped by
the service line.

Although the impacts are uniformly distributed across trains,
there are some train numbers that are associated with more
than twice as many cancellations or delays (e.g. Circle and
Hammersmith (C&H), Central, and District lines). This infor-
mation can be useful for operators to further investigate trains
individually in search of causes, including possible faulty train
equipment, trends, and systematic patterns that may lead to
corrective actions. The mitigating strategies that were used to
manage incidents can be further analyzed based on the the
reported cause of the disruption. The overwhelming majority
belong to four categories: “Customers and Public”, “Fleet”,
“Signals”, and “Staff”. Figure 9 shows a mosaic plot of cause
categories and the common strategies. In this plot, the width of
each column is proportional to the frequency of each strategy,
and within each strategy, the height of each box is proportional
to the frequency of the cause category. It reveals that most of
the cancellations are due to “Fleet” and “Staff”. Incidents due
to signal issues result in trains mostly diverted or reversed.
Trains are rarely non-stopped or withdrawn because of it.
However, when incidents due to “Customers and Public” and
“Staff” take place, trains usually skip stops.

We further inspect the frequency and prevalence of the ex-
tracted contributing factors (Section III-E) to uncover recurring
issues for incidents classified under ”Customers and Public”
(Fig 10) for two of the lines. Line 1, which mostly serves
areas on the periphery of the city, suffers frequent delays due
to trespassing (topic 2). In contrast, line two is frequently
facing delays due to doors not closing properly (topic 4),
likely because of overcrowding (topic 16). A detailed analysis
of these contributing factors (some of which could have been
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(a) Frequency of cancellations

(b) Frequency of delays

Fig. 8: Frequency of each impact per train id

Fig. 9: Mosaic plot of the employed control strategies and their
corresponding incident types

Fig. 10: Frequency of disruptions attributed to category ”Cus-
tomers and Public”

Fig. 11: Calender heatmap of frequency of canceled trips due
to “fleet” problems

left unnoticed by being in the original textual format) can help
decision makers to identify and rectify those, improving the
reliability of the system.

Considering the frequency with which trains are canceled,
we further break down these incidents by line, date, and
cause category. Figure 11 shows the calendar heatmap of
cancellations due to “Fleet”. It illustrates that District and
Central lines are more frequently affected. In comparison with
cancellations due to “Customers and Public” (Figure 12), these
lines rarely experienced such incidents, while Jubilee and
Northern lines were often affected.

V. CONCLUSION

In this paper, we present a methodology for automatic infor-
mation extraction from unstructured text from incident reports,
as applied to transit disruptions. We identify the underlying
causes, impacts on the passengers and trains, implemented
mitigating strategies, and recommendations for minimizing
the effect of a disruption. We also show that reports can be
automatically classified into different categories, possibly in
real-time. The methodology, as developed in this paper, is also
applicable to other functions of a transit agency, and process-
ing of manually generated reports by transportation agencies
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Fig. 12: Calender depiction of frequency of canceled trips due
to “Customers and Public” problems

(e.g., accidents logs). Another interesting application could
be extracting useful insights from passenger feedback. With
the large number of complaints and suggestions that transit
agencies receive from their customers, these automated text
mining tools can help improve the efficiency with which they
are processed. This can be accomplished by either extracting
information directly from text, or by classifying a report and
automatically sending it to the corresponding personnel, hence
distributing the workload more efficiently.
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