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ABSTRACT

One of the main features in mobility sharing applications is the exposure of personal
data provided to the system. Transportation and location data can reveal personal
habits, preferences, and behaviors, and riders could be keen not to share the exact
location of their origin and/or destination. But what is the price of privacy in terms
of decreased efficiency of the mobility sharing system? In this paper, for the first
time, we address the privacy issues under this point of view, and show how loca-
tion privacy-preserving techniques could affect the performance of mobility sharing
applications, in terms of both System Efficiency and Quality of Service. To this
extent, we first apply different data-masking techniques to anonymize geographical
information, and then compare the performance of shareability networks-based trip
matching algorithms for ride-sharing, applied to the real data and to the privacy-
preserving data. The goal of the paper is to evaluate the performance of mobility
sharing privacy-preserving systems, and to shed light on the trade-off between data
privacy and its costs. The results show that the total traveled distance increase due
to the introduction of data privacy could be bounded if users are willing to spend
(or “pay”) for more time in order to share a trip, meaning that data location privacy
impacts both efficiency and quality of service.
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1. Introduction

Mobility sharing applications are becoming more and more popular both in urban
and extra-urban settings, for either short and medium-long trips. People get together
on the same vehicles to share costs, reduce congestion and pollution, and, whenever
possible, socialize (Blumenberg and Smart, 2010; Liao et al., 2018; Librino et al.,
2018, 2019; Neoh et al., 2017). By providing these applications with both spatial and
temporal data on their activities, users could reveal personal habits, preferences and
behaviors. In a typical mobility sharing scenario, a driver who intends to drive from a
given location to a destination is willing to transport other potential riders for a part
of, or the whole, journey. In the context of ride-sharing, the drivers are professionals
who will be paid for the services they offer; in case of carpooling, the users are people
having same (or similar) destinations, and they carpool in order to share the cost of
the trips, or split the burden of driving and using their (personal) car. One typical
example of carpooling is the one used for home-work commuting, where users share
trips on a regular basis.

Correspondence Address M.Elena Renda, Istituto di Informatica e Telematica — CNR, 56124 Pisa, Italy.
Email: elena.renda@iit.cnr.it, erenda@mit.edu



Mobility sharing applications can vary in how much data they require and/or col-
lect from users, but usually they store information about where users are going, like
frequent destinations, how long they stay there, and origins of trips. Data collected
from mobile apps could be used for service improvement, for location-based market-
ing, information or alerts, through well-known mechanisms like geofencing and geo-
targeting (Lian et al., 2019; Maiouak and Taleb, 2019), or, depending on laws and
regulations, is required to be collected and retained by Countries, even for extended
periods of time, in order to provide copies of such information to governmental or other
authorities (see, e.g., (Feiler, 2010)). Some companies might simply share general us-
age statistics, while others may send user-identifying data to third parties (Cleary,
2018; Jennifer Valentino-DeVries and Krolik, 2018). As mobility companies further
blur the line between providing technology and transportation services, how they use
the amount of data they collect on users is becoming a growing concern among citizens,
authorities, and companies. Furthermore, data breaches are increasing, as cybercrim-
inals find company databases to be populated with treasured personal information:
hackers often sell information to professional scammers over black data markets (The
Manifest, 2019). Given that data breaches and misuse of personal information have
become more and more common over the past few years, users could be keen not to
share the exact location of their origins and/or destinations.

The data privacy problem requires to find a trade-off between data privacy and data
utility, a metric usually related to the performance, cost and Quality of Service (QoS)
based on the effectiveness of the underlying data. On one hand, masking location
data in order to avoid the identification of users in case of data leakage, misusage
and/or breaches increases user privacy; on the other hand, the loss of information
could lead to data utility decreases and to poor quality or low efficiency of the location-
based system. Some ride-sharing systems provide options for the users to meet at a
pick up point instead of providing their real address (Aivodji et al., 2016), or have
studied methodologies to mask users’ physical coordinates before the system acquires
them (Aivodji et al., 2018; Luo et al., 2019).

But what is the price of privacy control in terms of data utility? And how would this
affect the efficiency of mobility sharing systems, such as total miles driven to serve
all travelers? Here for the first time, we address privacy issues under this point of
view, and show how data privacy-preserving techniques applied to location data, with
increasing granularity of data anonymization, could affect the performance of mobility
sharing applications. We consider both transportation efficiency, namely Vehicle Miles
Traveled (VMT), and quality of service, namely users’ waiting and riding time. In
particular, we address a specific mobility sharing scenario, carpooling for home-work
commuting, because it is the largest contributor to traffic congestion and pollution,
but also because this kind of “regular” trips have the potential to reveal users’ repet-
itive route patterns and their recurrent time schedules. To this end, we use the data
collected through a survey issued in 2016 to people living and/or working in Pisa
(Italy) and its surroundings (City of Pisa, 2016), in which users provided exact home
and work addresses, time schedules, and flexibility on departure times. To the best of
our knowledge, this is one of the few datasets including such a level of geographic and
time details.

The transportation community earnestly needs a clear definition of property right
of mobility data, and a set of precise rules that govern the ownership, use, transaction,
and erasure of digital information related to mobility. This paper focuses on one spe-
cific component of this broad mobility data discussion: the value of locational privacy
quantified from the supply perspective, i.e., the impacts of maintaining the different



degrees of locational privacy upon the system performance of the shared mobility
service.

To the best of our knowledge, this is the first paper trying to (i) quantify the effects
of privacy control on ride-sharing applications in terms of quality of service and system
efficiency loss; (ii) compare different techniques and different levels of location data
anonymization granularity; (iii) show the trade-off between data location privacy and
data utility.

In order to anonymize location data and guarantee privacy to carpoolers, we use
three different data-masking techniques, namely k-anonymity, obfuscation and cloak-
ing, and fine-tune their settings to achieve different levels of anonymization granularity
(Section 3.3). To match trips, we apply the Carpooling Shareability Networks-based trip
matching algorithms presented in (Librino et al., 2018). Carpooling shareability net-
works connect trips (the nodes in the network) satisfying spatial (physical location)
and temporal (user’s departure time and flexibility) constraints (see Section 3.2). The
presence of a link between two nodes in the network means that the related trips
are shareable. Over the generated network we compute the optimal trip matching to
maximize the saved VMT.

First, we compare the privacy-preserving shareability network, generated using the
masked data, with the original shareability network, generated using the real location
data, to quantify how many trips becomes shareable in the former while they are not
in the latter (false positive), and how many are recognized as not sharebale while they
are in reality (false negative). Then we compare the optimal matching over the original
network and the matching over the privacy preserving network, showing that choosing
bad matches in the latter, i.e. false positive links, will degrade the performance in terms
of VMT and waiting/riding time. We use the difference in the system performance as
a way to quantify the price of privacy. The results clearly show that the price to pay
to guarantee data privacy within a carpooling system is to increase its total carbon
footprint, i.e. the total traveled miles, but this effect could be mitigated if users are
willing to spend (or “pay”) for more time in order to share a trip on a daily basis.

In this paper we are assuming that the ride-sharing system will only receive the
masked data and will never be able to know the real position of the users even after
the (privacy-preserving) matching has been done. On a real implementation, though,
matched users should share their reciprocal information once the system notifies them
that their trips could be shared. Nevertheless, at that time users themselves will chose
to (privately) communicate to the matched carpooler their exact address, or find an
agreement on a meeting point.

The paper is organized as follows: in the next Section we present general approaches
for preserving privacy, in different application scenarios, and then focus on the trans-
portation and shared mobility scenario; Section 3 introduces the data masking mech-
anisms we identified as the most suitable for the mobility sharing scenario, and we
describe the methodologies used for the simulations, the data, and the experiment
settings; Section 4 presents the results we obtained, while in Section 5 we conclude by
discussing the results’ implications and suggesting future direction in the implemen-
tation of privacy-preserving mobility sharing systems.

2. Related work

In this paper, we present different methodologies for masking users’ location data, so
not to provide the exact location to the ride-sharing system and to the other riders as



well. To prevent or mitigate privacy breaches, many location data masking techniques
have been proposed in literature to hide real users’ locations while providing their
approximate information used in Location Based Services. k-anonymity technique was
introduced in the context of relational database (Sweeney, 2002), where data are stored
in a table and each row of this table corresponds to one individual. The basic idea
of the k-anonymity model is to guarantee that the information of every data subject
cannot be distinguished from the information of other k — 1 data subjects. In this
context, for example, the dummy location insertion (Kido et al., 2005; Shankar et al.,
2009) generates k — 1 dummy points and makes a user’s location indistinguishable
among a set of k locations, which provides k-anonymity.

The spatial and temporal cloaking techniques (Bamba et al., 2008; Gedik and Liu,
2005; Gruteser and Grunwald, 2003; Mokbel et al., 2006) choose a sufficiently large
region that includes k£ indistinguishable locations to achieve k-anonymity.

To further improve privacy properties of the k-anonymity mechanism, the [-diversity
concept has been introduced (Machanavajjhala et al., 2006): the cloaked region con-
taining the k individuals must include [ different POIs. This may, of course, sensibly
reduce the accuracy of the actual position and lead to an excessive degradation of the
quality of service (Bamba et al., 2008; Xue et al., 2009).

A specific concept of obfuscation, similar to both k-anonymity and the spatial cloak-
ing technique proposed in (Gruteser and Grunwald, 2003), has been defined in (Duck-
ham and Kulik, 2005): here, obfuscation means “deliberately degrading the quality of
information about an individual’s location in order to protect that individual’s location
privacy”. The geographic space is modeled as a graph in which the nodes are locations
and the edges represent connectivity and/or proximity between locations. The actual
location is obfuscated by providing a subset of the nodes whose cardinality could be
tuned to obtain the desired level of privacy.

The notion of differential privacy first appeared in (Dwork, 2006) in the context
of statistical databases. The key concept is that an aggregated response to a query
does not change if a single user data is modified. In other words, the probability
of a response r to a query sent to database D and the probability of a response
7’ sent to database D' (where D and D’ are adjacent, namely they differ only in a
single individual data) should be less than ef. Typically this is achieved by adding
random noise to the query output. In (Ho and Ruan, 2011), a differential privacy
approach has been applied for interesting geographic location discovery using a region
quadtree spatial decomposition. A more refined concept of location privacy (similar
to differential privacy) has been introduced in (Andrés et al., 2013): this new notion
is named geo-indistinguishability and is based on a bi-variate version of the Laplace
function, to perturb the actual location. The case study application is the point-of-
interest retrieval, and the proposed framework takes into account the desired level of
protection as well as the side-information that the attacker might have.

2.1. Privacy in Transportation

Many papers on location privacy are focused on location-based applications such as
point of interest retrieval, mapping applications, GPS navigation and traffic patterns,
and location-aware social networks.

In transportation, one of the first contexts in which the privacy problem arose has
been vehicular networking. Typical applications in this field are: traffic monitoring,
road safety and infotainment. In a vehicular network, vehicles communicate with each



other and with road infrastructures towards back-end servers by including in the mes-
sages their position, speed and other information that could lead to a privacy leakage.
One way of approaching privacy in vehicular networks is the use of pseudonyms (Baik
Hoh et al., 2006; Bettini et al., 2009; Buttydn et al., 2007; Eckhoff et al., 2011; Su-
casas et al., 2016). Another way is to encrypt the mobility traces as in (Bilogrevic
et al., 2014; Xi et al., 2014), or to blur them into a region with lower resolution (both
in space and time) as in (Cheng et al., 2006). In (Hoh and Gruteser, 2005), a path
perturbation algorithm is proposed to avoid the tracking of individual users: the key
concept is to cross paths in those regions where at least two users meet, so decreasing
the possibility that an adversary could distinguish the trajectories of different users.

In (de Montjoye et al., 2013), an interesting result has been given by analyzing the
mobility phone traces of more than one and half million of individuals. They found that
only four spatio-temporal points are sufficient to uniquely identify human trajectories
of 95% of individuals. Given that the resolution of their dataset was quite coarse
(the space resolution is given by the zone covered by an antenna, and the temporal
resolution is one hour), it is clear that it is rather simple for an attacker to infer private
information. A similar study has been presented in (Gao et al., 2019). Here, the authors
used a data set, generated by a LPR (License Plate Recognition) system composed
by 516 detectors, consisting of 260 million spatio-temporal transactions generated
by 14 million vehicles in one month. They showed that five spatio-temporal records
are enough to uniquely identify about 90% of individuals even when the temporal
resolution is 12 hours. Moreover, they proposed two procedures to be applied to LPR
data sets before publishing in order to preserve privacy: one is based on suppressing
sensitive records, while the other one is a generalization solution using a bintree-based
adaptive time interval cloaking algorithm. In (Ma et al., 2013) instead, the focus is on
the amount of side information that could be sufficient to an attacker for identifying an
individual mobility trace from a data set of anonymous trajectories. They show that
just 10 pieces of side information (referred as “location snapshots”) are enough for
identifying between 30% and 50% of the victims. A “Privacy-by-Design” approach by
means of virtual trip lines (VTLs) is proposed in (Sun et al., 2013). The key concept
is that mobile data is collected only when the privacy is preserved. They extend the
concept of VTL by considering a traffic modeling system of VTL zones able to apply
different filtering approaches depending on the desired level of privacy.

The risk-utility trade-off of mobility data sets has been analyzed in depth in (Calacci
et al., 2019), by evaluating the balance between the value of high-resolution location
data to the private market and to the public interest, and its implications for individual
privacy and personal risk. This paper is quite interesting since it also provides real-
world examples of how high resolution location data, with different degrees of privacy
protection, can be used in the public sphere and how it is currently used by private
firms.

In (Stenneth and Yu, 2010), the concept of transportation mode homogeneity is
introduced: a user submitting a location based query is aggregated with at least k£ — 1
other mobile clients traveling with the same transportation mode. The reason for
suggesting this kind of k-anonymity is that by simply grouping k£ users within a region
is not sufficient to guarantee privacy: in fact, if £ — 1 mobile clients are moving in that
region for instance by walking or cycling, and one is driving a car, it is very easy for an
adversary to identify them in case of continuous queries (a continuous query is when
the client asks a service for a certain period of time).

In ride-sharing applications, the problem of data privacy preservation is of central
importance because in order to match drivers and riders, their position and departure



time must be communicated to the system. In (Aivodji et al., 2016), an integrated ap-
proach consisting in advanced privacy technologies combined with multimodal shortest
path algorithms has been proposed for computing meeting points that are mutually
interesting for both drivers and riders. In (Luo et al., 2019), a privacy-preserving ride-
matching scheme is proposed: riders and drivers are matched by the server according
to their distances in the road network without revealing their location. In (Goel et al.,
2016), the proposed privacy-aware ride-sharing scheme is based on the obfuscation
technique applied to riders’ location. In (Sherif et al., 2017) instead, autonomous
vehicles-based ride-sharing is considered: in the proposed scheme, the ride-sharing re-
gion is divided in cells, each one corresponding to a bit in a binary vector, the trip
data is coded trough these binary vectors, encrypted before being sent to the server,
and a secure k-nearest neighbors algorithm is applied to find the most similar trips.
A similar work is presented in (Nabil et al., 2019). A privacy preserving carpooling
scheme is presented in (Li et al., 2019) which uses anonymous authentication and build
a private blockchain into the carpooling system to record carpooling records for data
auditability. As in the current paper, the papers presented in literature try to achieve
privacy preservation through mechanisms usually borrowed from other contexts, but
while previous literature mainly focuses on achieving good levels of computational
performance in matching rides while protecting privacy, or demonstrating the security
properties of the privacy protocol adopted, here we try to make a step forward, by
evaluating the effects of privacy control on the overall system. In particular, in this
paper we try, for the first time in literature, to quantify the effects of data-masking on
ride-sharing applications both in terms of QoS (users’ riding time and waiting time)
and system efficiency (VMT). To do so, we compare the results of different techniques
for location data anonymization, using different settings to evaluate different levels
of privacy granularity, and highlight the trade-off between data location privacy and
data utility.

3. Materials and Methods

The main goal of this paper is to capture the trade-off between data utility and data
privacy within ride-sharing applications. In order to tackle this problem we build an
evaluation model requiring: (i) trip matching algorithms efficient enough to be run sev-
eral times on different data-masking algorithms and with different parameter settings;
(ii) users’ location data, with departure time and flexibility to compute efficiency and
QoS costs; (iii) a certain number of data-masking methodologies allowing to fine-tune
the privacy granularity; and (iv) a methodology for the evaluation of the system QoS
and efficiency outcomes.

In this Section we present the methodologies we have chosen (and why) to model
sharing opportunities within a carpooling system, the techniques we applied to
anonymize location data in order to protect sensible users’ information with differ-
ent level of privacy granularity, and the data we used to test the algorithms and the
methodologies.

3.1. Shareability Networks

To compute sharing opportunities we use the Shareability Networks (SNs) paradigm,
firstly introduced in (Santi et al., 2014) to model ride-sharing in the context of taxi
trips. The novel idea of the authors is to represent the trips as network nodes, where



nodes are connected only if the corresponding trips are shareable, based on given con-
ditions, i.e. time and space constraints of the trips. The algorithm used to find an
optimal solution for matching trips is a (weighted) graph matching, that is computa-
tionally very efficient, no matter which is the specific objective function to optimize.

To model carpooling opportunities here we also use a graph representation of the
sharing opportunities named carpooling shareability network presented in (Librino
et al., 2018), defined as N = (T, E), where T is the set of nodes corresponding to
the trips in the dataset, and E is the set of directed links between nodes correspond-
ing to shareable trips. The network as defined herein is substantially different from
the one defined in (Santi et al., 2014) to analyze taxi ride-sharing opportunities in
New York City, since we use dissimilar criteria to determine the existence of a link in
the network; furthermore carpooling links have a direction (once the driver is deter-
mined) in contrast to the bi-directional links used for taxi rides. In fact, different from
taxi ride-sharing and Uber-like car-sharing programs, in which drivers roam the city
picking up and dropping off passengers, in the context of carpooling travelers have a
different role, namely that of driver and passenger. When carpooling, the traveler who
is also the driver might incur a higher travel “cost” due to the extra time typically
required to detour from the optimal route in order to pick the passenger up (and,
possibly, drop her off). The maximum amount of extra time allowed by the driver for
the detour needed for carpooling is called the sharing delay A.

Each trip T; in T is defined by:

— S(i) and D(i), respectively the starting and the destination locations expressed
as a pair of (lat,long) coordinates;

— 5¢(i), the typical starting time of the trip;

— t4(4), the flexibility on the starting time. This value, together with s;(i), identifies
a time interval [s;(7) —t¢(7), s¢(7) +t(7)] which represents the time window within
which the traveler is willing to start the trip. Consequently, we set s/ (i) =
s¢(i) — t(i) and sMAX(3) = s4(i) + t4(3).

Let dap be the distance between the locations A and B, as determined by the
underlying road network; and 74p, the time required to travel from A to B. Travel
time estimations have been obtained through a public, OpenStreetMap-based API.

Using the above notation, for a given trip 73, its length is denoted by dg(;)p(i), and
its duration is 7g(;p(s)-

3.2. Shareability Conditions

Given a driver trip 77 and a passenger trip 75, we say that 75 is shareable with T3 if
the three following conditions hold:

Ts1)s(2) T Ts@)p@) + ToE)p) < Tsypa) + A (1)
s7(2) — sMAX(1) < Tsys2) < stTAN(2) — s (1) (2)
dsyp(1) > dsys) + dpe)p) (3)

The first condition states that the required detour time for the driver to pick the
passenger up and drop her off does not exceed the threshold value A. The second



condition ensures that the two starting time windows are properly overlapped. While
the second condition establishes the temporal compatibility of the two trips, this is
not enough to ensure that carpooling actually contributes to reduce traffic and carbon
footprint. In fact, it is possible that the driver performs a very long detour to pickup
the passenger, thus making the length of the shared trip longer than the sum of the
lengths of the two individual trips. So, we add the third condition that ensures that
the above described possible negative side effects of shared mobility are avoided.

To sum up, in the carpooling shareability network N = (7, FE) a link e;2 € E
between 77 and T exists if and only if the three conditions (1), (2) and (3) stated
above are satisfied.

Similarly to what have been done by (Librino et al., 2018; Tachet des Combes et al.,
2017) and (Santi et al., 2014), in the remainder of this paper we focus on pair-wise,
static matching of rides: i.e., at most two trips can be combined into a single ride
and, when the shared ride is formed, no further modification to the route is possible.
Although simplified with respect to some ride-sharing models and existing services,
this approach has proven to be computationally effective and to provide impressive
opportunities for ride-sharing.

The reason why we have chosen the Shareability network-based algorithms for
matching the trips is that, to the best of our knowledge, this is the only method-
ology accounting for shared traveled distance, detour time (i.e. extra travel time due
to sharing), and flexibility (i.e. waiting time), while performing trip matching, in a
very efficient way, allowing to easily compare data-masking techniques and different
parameter settings.

They are also fast enough to allow testing different algorithms and sets of parameters
(Section 3.5), both for matching (e.g. 16 delta detour times) and privacy (e.g. the
granularity given by the parameters radius and k for k-anonymity). This allowed us
to exactly analyze which is the impact of privacy masked-data not only on traveled
distance but also on traveling time, represented by the detour time parameter Delta
(Par 3.2, Equation 1), and waiting time, represented by the time windows in the
sharebility conditions (Par 3.2, Equation 2).

3.3. Introducing Data Privacy in Shared Mobility

To study the effects of data privacy control in carpooling applications, we have imple-
mented 3 different techniques of location data anonymization:

(1) obfuscation;
(2) k-anonymity;
(3) cloaking.

The obfuscation mechanism we implemented consists in generating a random location
within an area centered in the real location with a given radius.

K-anonymity is a very common technique and consists in generating £ — 1 dummy
locations within an area centered in the real one with a given radius (as in the ob-
fuscation mechanism) and then randomly selecting a location among the dummy ones
plus the real one.

In the cloaking technique, the real location is replaced by a point (like the center
or the centroid) of a given region. For this purpose, we wanted to use similar regions,
at least in terms of people, a stable set of geographic units for the presentation of
data. For our study we computed the centroid locations of the census blocks (ISTAT,
Istituto Nazionale di Statistica, 2011) to which the real position belongs to. Census



blocks are statistical areas bounded by visible features, such as streets, roads, streams,
and railroad tracks, and by non-visible boundaries, such as selected property lines and
city, township, school district, and county limits. Generally, census blocks are small in
area; for example, a block in a city is bounded on all sides by streets. Census blocks
nest within all other tabulated census geographic entities and are the smallest unit for
all tabulated data. Census blocks in suburban and rural areas may be large, irregular,
and bounded by a variety of features.

Figure 1 graphically shows how the three mechanisms work, with the real position
represented with a star and the circles representing the masked locations.

3.4. Data

The MobilitandoPisa (City of Pisa, 2016) joint initiative of the National Research
Council with the city of Pisa led to an anonymous mobility survey whose objective
was to understand the daily commuting habits within the metropolitan area of the
city of Pisa.

The survey data we have chosen for this study has the unique feature of containing
not only detailed information on origins and destinations of daily car commuters and
their departure and arrival times from home to work and vice versa, but also a pre-
cise quantification of their flexibility in departure and arrival time. This information
provides the opportunity to also evaluate the effects of data privacy on users waiting
time. To the best of our knowledge, there is no other available datasets providing in-
formation on origins, destinations, departure time and flexibility, and we believe that
a dataset based on a real situation could provide a better understanding of reality.

The survey was extensive and structured into different parts; the most relevant for
this study are reported below:

e Demographic Data, includes information such as gender, age, marital status,
educational level, profession, and owned transportation means;

o Workers Commuting Data: transport mode(s) used for commuting, commuting
hours, typical travel times, home and work addresses, working times, and their
potential flexibility in departing earlier/later from/to home;

o Attitude towards: car/ride-sharing/pooling.

Among the 6,200+ respondents, we extracted the subset of Np = 1965 commuters
who daily commute by car, agrees on carpooling and, most importantly, provided
detailed information on their home and work addresses, departure times and flexibility.

3.5. Experiments

We have run extensive experiments to analyze the effect of privacy control on car-
pooling. In particular, we want to understand how masking the real coordinates of
carpoolers’ positions will affect the global system efficiency (in terms of carbon foot-
print, i.e. VMT) and the quality of service (in terms of the extra time required to
the users in waiting for a ride or riding). We perturbed both origin and destination
coordinates to be as more general as possible.

We built the SNs over the real location data and the privacy-preserving one, i.e.
using the real coordinates in the former case, and the masked ones in the latter. For
the detour time A we used values ranging from 0 to 15 minutes.

For both obfuscation and k-anonymity we used three radii: 100, 200 and 500 meters,



while for the latter k£ was set to 5 and 10. Since in obfuscation and k-anonymity the
point is randomly selected, we run the same setting 20 times, and for each we will
report the average. We computed the performance in terms of number of matched
nodes (trips) and saved traveled distance with respect to the sum of all the single ride
distances, this last being a measure strictly correlated with carbon emissions (one of
the metrics against which the hidden costs of privacy will be evaluated).

For matching the trips over the SN, different methodologies could be used depend-
ing on the objective we want to achieve. If the objective is to maximize the number
of matched trips and minimize the number of circulating vehicles, the maximum car-
dinality matching (M.) can be used. If the objective is to reduce carbon footprint,
by maximizing the amount of kilometers that could be avoided by matching the trips
instead of performing single trips, the mazimum saved distance matching (My) al-
gorithm can be used. In the former the optimal solution is given by computing the
maximum matching on the SN, while in the latter we compute a maximum (distance-)
weighted matching on the SN.

Since in this paper we focus on carbon footprint, we have chosen My; in Section 4
we only report the results obtained with My in terms of saved traveled distance.

4. Results

As said, SNs connect trips whose spatial and temporal constraints satisfy all the share-
ability conditions presented in Section 3. But what happens when spatial information
is masked to provide privacy to the users? In Figures 2 and 3 we show two examples
of what could happen in the SN creation and in matching the trips when masking the
geographical coordinates of the trips, and introduce the concept of “good matches”
and “bad matches”.

In Figure 2 we have 8 trips to be paired: after verifying the shareability conditions
introduced in Section 3.2, we obtain the SN in Figure 2a; the optimal solution for
maximizing the saved traveled distance is represented by the matching in Figure 2b.
In Figure 2c on the right we depicted the SN generated by the privacy-preserving data,
where some of the links correspond to the original ones (true positive), some links
disappeared, meaning that with the masked data the trips result to be not shareable
(false negative), while other nodes have been connected through links even though
they were not in the original SN, meaning that they did not meet all the shareability
conditions on the real data, but they do on the privacy-preserving network (false
positive). In this example none of the false positive (“bad links”) has been chosen for
the matching: we define these “good matches”. Nevertheless, the solution is not the
optimal one in the original network. This implies that the total saved traveled distance
of the matching solution computed in the privacy-preserving network of Figure 2d is
lower than that achieved by the optimal solution reported in Figure 2b.

In Figure 3, we have a SN with 10 nodes. As for the previous example, after mask-
ing the geographical coordinates, we do have true positive, false positive, and false
negative, but in this case during the matching phase some of the false positive links
(between trips Ty — T3, Ty — Ty, Tg — Tr, Tg — T1o) have been selected (see Figure 3b):
in this case we are in presence of “bad matches”, and including them in the final result
means not only that the returned matching would not correspond to the optimal so-
lution in terms of saved traveled distance, but also that for these matched trips either
the traveled distance is greater than performing the single trips, and/or they require
more flexibility on the departure time, and/or they require a greater detour time than
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the nominal one — recall conditions (1),(2),(3) in the definition of SN. To quantify the
price of introducing privacy control in carpooling applications, we first compared the
SNs obtained with the privacy-preserving data with those obtained with the real data
(Section 4.1), and then the corresponding matchings (Section 4.2).

4.1. Comparing shareability networks

To compare the SNs, we introduce the concepts of “good link” and “bad link”: a link in
the privacy-preserving SN is good (also called true positive) if the same link is present
in the real SN, namely the two related trips are effectively shareable; on the other hand
the link is bad (also called false positive) if it is not present in the real SN, namely the
two related trips are identified as shareable with the anonymized location data, but
not with the real data.

Here we report, for all the privacy techniques applied, the percentage of true positive
(TP) with respect to the real SN and the percentage of false positive of the privacy-
preserving network (Figures 4 and 5). We do not report the percentage of false negative
links in the privacy-preserving SN, i.e. all the links connecting trips in the real SN
resulted unshareable with the masked data, since they are easily derived as 1 — T'P.
Both results show that low values of detour time A imply high loss in terms of data
utility; the same happens if we zoom out and mask more users’ locations by increasing
the level of privacy through higher radii (for obfuscation and k-anonymity) or the value
of k (for k-anonymity). Cloaking performs better than the other approaches in terms
of true positive links when A is really low (< 2), or when obfuscation and k-anonymity
have radius higher than 100 meters, behaving similarly to the 200 meters radius-based
methods when A > 5, with higher degrading performance when A > 10; in terms of
false positive links, cloaking returns similar results as the 200 meters radius methods.

Considering for instance the value of A = 5, we lose from 40% — using k-anonymity
with 100 meters radius and k=5 — to 656% of good links — using obfuscation with
500 meters radius (see Figure 4); the methods have the same behavior in identifying
bad links (see Figure 5), i.e. links in the privacy-preserving SN connecting 2 trips not
shareable in the real SN: about 53% of the total links of the privacy-preserving network
are “wrongly” introduced by k-anonymity with 100 meters radius and k=5 due to the
masked data, a percentage that increased up to 68% when using obfuscation with 500
meters radius.

4.2. Comparing matchings

To compare the matchings, we introduce the concepts of “good match” and “bad
match”: a match over the privacy-preserving SN is good if the corresponding link
is present in the real SN, namely the link is a true positive one, meaning that the two
related trips are effectively shareable if considering the real location data; on the other
hand, the match is bad if chosen among the false positive links.

Here we show how “good” (or “bad”) the matching obtained with the privacy-
preserving SN could be with respect to the real one. To this end, we do not only
compute the percentage of good matches through the privacy-preserving SN, but also
the total traveled distance saved with privacy-preserving carpooling, and compare it
with the optimal savings that would be achieved having exact knowledge of the origin
and destination of trips. A value of 80%, for instance, would indicate that the optimal
privacy-preserving carpool matching achieves only 80% of the total distance savings
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achievable without privacy preservation.

In Figure 6, the percentage of good matches is reported: even if cloaking outperforms
all the other mechanisms for A < 1, its performance gradually degrades to eventually
return similar results as the 200 meters radius-based methods when A > 5; the k-
anonymity mechanism with 100 meters radius and k=5 is the best when A > 2, while
the worst is obfuscation with 500 meters radius.

In Figure 7 we report the saved traveled distance obtained over the privacy-
preserving SN when considering only the good matches, comparing all the mechanisms:
the trend is exactly the same as the one showed for the good matches percentage (Fig-
ure 6), with k-anonymity mechanism with 100 meters radius and k=5 being the best
in general, and obfuscation with 500 meters radius being the worst. We also report the
traveled distance savings comparing cloaking and the 100 meters-based mechanisms
(Figure 8), cloaking and the 200 meters-based mechanisms (Figure 9), and cloaking
and the 500 meters-based mechanisms (Figure 10). As for the SN comparisons, when
comparing the matchings low values of detour time A imply high loss in terms of
system efficiency, i.e. saved traveled distance; the same happens if we zoom out and
mask more users’ locations by increasing the level of privacy through higher radii (for
obfuscation and k-anonymity) or the value of k (for k-anonymity). Cloaking outper-
forms all the other methods when these consider a radius of 500 meters (quite clear
from Figure 10).

If we consider, for instance, A = 5, k-anonymity with 100 meters radius and k=5
could achieve a traveled distance saving of about 74% of the one achievable without
privacy preservation (Figure 8), while obfuscation with 500 meters achieves only a 57%
of distance savings (Figures 10); these saving values could be increased up to 88% and
80%, respectively, if A = 10, and 93% and 88% if A = 15.

In Figure 11 we show how different granularity levels of privacy applied to k-
anonymity could affect system efficiency: increasing privacy control, either through
the radius or k, clearly worsens the performance, while higher values of A reduce the
losses in terms of saved traveled distance, with a maximum result of 93% achievable
with 100 meters radius k-anonymity and A = 15.

We have also computed the total saved traveled distance of the optimal matching
over the privacy-preserving SN, counting all the matches provided by the matching
algorithm, regardless of whether a match is good or bad. To quantify the performance
degradation due to privacy preservation, the saved traveled distance of a bad match
is computed by using the real start and destination locations of the related trips.
When comparing the results reported in Figure 12 with those reported in Figure 7,
the overall trend of the different methodologies is the same, but for low values of A
the total saved distance is higher, with a maximum saving around 97% for the total
saved distance against a 93% for the good matches-based saved distance. This happens
because a bad match in the privacy-preserving SN could be so because one or more
of the shareability conditions introduced in Section 3.2 are not satisfied when using
the real data. If we have a bad match because the Condition 3 is not satisfied (i.e. the
length of the shared trip is longer than the sum of the lengths of the two individual
trips), the correspondent saved distance will be negative. On the other hand, let’s
assume we have a bad match m, for which Condition 3 is satisfied (i.e. the length
of the shared trip is shorter than the sum of the lengths of the two individual trips)
the total saved distance will be higher even when selecting m,; but, since m, is a
bad match, it doesn’t satisfy either Condition 1 (i.e. the required detour time for the
driver to pick the passenger up and drop her off does not exceed the threshold value
A) or Condition 2 (the starting time windows of driver and passenger are properly
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overlapped), or both. In this case we are in presence of the second price of privacy
control: the user time, both in terms of detour time and departure time flexibility.

In Figure 13 we compare, for k-anonymity with 100 meters radius and k=5 only, the
good matches saved traveled distance and the total saved traveled distance over the
privacy-preserving matchings. The difference between these two values is quite high
for low values of detour time A, and becomes smaller while increasing A. On the other
hand, in Figure 14 we report the break down of percentage of bad matches depending
on which of the three conditions (detour time A, the time window, and/or the saved
distance) is violated.

For instance, if we select A = 5 we have a 74% good matches saved distance against
a 95% of the overall matching saved distance (Figure 13), but for the same value we
have more than 88% of bad matches due to an increased detour time (Figure 14),
meaning that the effective detour time required to share those trips is higher than the
nominal A. The higher is the nominal A, the lower is the percentage of bad matches
due to its related condition (Condition 1), and the higher is the percentage of bad
matches due to non-overlapping time windows (Condition 2) and/or negative saved
distance (Condition 3). This is even clearer from Figures 15 and 16, where we compare
all the mechanisms by reporting the percentage of bad matches present in the privacy-
preserving matching due, respectively, to an increased detour time or to an increased
traveled distance for the shared trip. In particular, we selected 4 different values of A,
namely 0, 5, 10 and 15, and for each method and each A we show how increasing the
privacy control through the radius value affects the bad matches in terms of detour
time (Figure 15) and traveled distance (Figure 16). Since cloaking is the only method
not based on radius, in these Figures we report the same value for all the radii, while
for k-anonymity, for ease of reading, we only report the results for k=5.

In terms of percentage of bad matches due to an increased detour time, cloaking
performs better for A = 0, 5 no matter the radius used in the other methodologies,
while for A = 10, 15 cloaking is outperformed by obfuscation and k-anonymity when
the radius is greater than 200 meters (see Figure 15). K-anonymity and obfuscation
have similar trend and behavior, even if the latter is always slightly better than the
former. Higher values of A perform better for all the methods, i.e. reduce the percent-
age of bad matches due to higher effective detour time. This increase of detour time
is quantifiable in about 3’ for A = 5, on average, and about 5’ for A > 10, on average,
for all the mechanisms considered (cloaking included).

In terms of percentage of bad matches due to an increased distance traveled when
performing the shared trip, cloaking performs better for A = 15, no matter the radius
used in the other methodologies, while for A = 0, 5, 10 cloaking is outperformed
by obfuscation and k-anonymity when the radius is greater than 200 meters (see
Figure 16). Also here k-anonymity and obfuscation have similar trend and behavior,
but in this case k-anonymity is always slightly better than obfuscation. Lower values
of A perform better for all the methods, i.e. reduce the percentage of bad matches due
to higher traveled distance.

The combination of all the results presented here clearly shows that a trade-off be-
tween privacy preservation, system efficiency (traveled distance) and quality of service
(time) can be fine tuned for privacy-preserving carpooling systems.
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5. Discussion

In this paper, for the first time in literature, we try to quantify the effects of privacy
control on ride-sharing applications, and capture the trade-off between data privacy
and data utility, both in terms of QoS (users’ riding time and waiting time) and
system efficiency (VMT). We have compared different techniques for location data
anonymization, achieving different levels of privacy granularity by fine-tuning their
settings.

The analyses reported in this paper provide useful insights into the trade-off between
user privacy and data utility in the context of home-work carpooling. The analyses
allow a careful quantification of the effects of different privacy-preservation techniques
and of their granularity on total VMT, showing that better VMT values can be ob-
tained if users agree to trade convenience with privacy, more in terms of detour time
(i.e. travel time) than time flexibility (i.e. waiting time). For instance, with a value
of detour time A of at least 5 minutes, the VMT increases only by less than 10% in
case of privacy-preservation. Thus, by compromising on convenience, it is possible to
preserve privacy by only minimally impacting VMT. This observation might be espe-
cially useful for city authorities and policy makers to find a good compromise between
the citizens’ individual right to privacy, and the societal need of reducing VMT. For
instance, introducing more flexibility in working hours could facilitate the achievement
of the above compromise in urban contexts.

In terms of the relative strength of the different privacy-preserving techniques con-
sidered, k-anonymity is found to consistently outperform obfuscation, while cloaking
becomes the most effective method when the spatial granularity of k-anonymity be-
comes large.

The focus of this paper has been on masking both origin and destination of trips.
However, if the carpooling system is provided by the employer, it is clear that the real
work destination could be used, implying that privacy-preservation could be applied
only to one end of the trip. This is one avenue for our future work.

Another interesting future study could also be the application of privacy to the
temporal dimension of the problem, namely by masking the time of departure. The
data-masking techniques used for this study have been selected since they offer the
option of changing the granularity of privacy and capture the trade-off we were looking
for. For the future, we plan to evaluate and compare more sophisticated location
privacy and anonymization techniques, such as differential privacy, or encryption and
protocol-based methodologies, such as those introduced in (Aivodji et al., 2018; Luo
et al., 2019).

Users are becoming more and more concerned and aware of privacy issues, espe-
cially after data breaches happen. Currently, users grant whole data ownership and
rights to the companies, since otherwise they would not be able to use the specific
service/technology. If the current scenario will change (e.g. for new regulations), com-
panies should start offering users benefits and rewards (e.g. lower cost, priority, higher
score, etc.) to nudge them to fully or partially opt-out from the “privacy option”,
allowing the system to fully access their location data, or reduce the level of privacy
users were initially granted. If the user could set a desired level of privacy or decide
to do not require privacy at all, this will lead to different levels of data privacy within
the same privacy-preserving system. Performing tests on the sensitivity of the system
efficiency and QoS with respect to the riders penetration rate and their geographical
distribution could be another interesting research direction to investigate.
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Figure 1. Example of privacy control techniques applied to the geographical coordinates of carpoolers: (a)
Obfuscation; (b) K-Anonymity; (c¢) Cloaking.
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Figure 2. Example of the optimal matching over the real Shareability Network (SN) and of a good matching

over the privacy-preserving SN.
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(a) SN (straight line) and matching (dotted lines)
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Figure 3. Example of a bad matching over the privacy-preserving shareability network (SN) compared to

the real SN and correspondent matching.
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Figure 4. Percentage of true positive in the privacy-preserving shareability networks, i.e. trips identified as
shareable in both networks.
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Figure 5. Percentage of false positive in the privacy-preserving SNs, i.e. trips identified as shareable with the
masked data, but as not shareable with the real data.
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Figure 6. Percentage of good matches in the privacy-preserving SNs, i.e. trips identified as shareable in both
networks, and selected for the optimal matching in the privacy-preserving SNs.
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Figure 7. Matching saved traveled distance achievable in the privacy-preserving SN when only considering
good matches, savings reported in terms of percentage with respect to the real SN.
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Saved Distance, MaxSavedDistance Algorithm
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Figure 8. Comparing 100m radius-based algorithms and cloaking saved traveled distance over the privacy-
preserving SN.
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Figure 9. Comparing 200m radius-based algorithms and cloaking saved traveled distance over the privacy-
preserving SN.
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Figure 10. Comparing 500m radius-based algorithms and cloaking saved traveled distance over the privacy-
preserving SN.
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Figure 11. Comparing different granularity of privacy control within the same algorithm, K-Anonymity, in
terms of saved traveled distance.
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TOTAL SAVED DISTANCE, max saved distance algorithm
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Figure 12. Matching saved traveled distance achievable over the privacy-preserving SN when also considering
the bad matches.
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Figure 13. Comparing saved traveled distance and total saved traveled distance achievable over the privacy-
preserving SN for k-anonymity with radius 100m and k=5.
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K-Anonimity 100m k5 - Bad Matches
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Figure 14. K-anonymity with radius 100m and k=5: percentage of bad matches due to incresed detour time
A, to non-overlapping time windows, and/or increased distance for the shared trip when compared to the sum
of the solo rides.
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Figure 15. Percentage of bad matches present in the privacy-preserving matching due to increased detour
time delta for the shared trip w.r.t. the nominal one.

24



% of Bad Matches because of Increased Distance
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Figure 16. Percentage of bad matches present in the privacy-preserving matching due to increased distance
for the shared trip wrt the single trips.
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