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Data-driven Vehicle Rebalancing with Predictive Prescriptions in the
Ride-hailing System

Xiaotong Guo, Qingyi Wang, and Jinhua Zhao

Rebalancing vacant vehicles is one of the most critical strategies in ride-hailing operations. An effective rebalancing strategy
can significantly reduce empty miles traveled and reduce customer wait times by better matching supply and demand. While the
supply (vehicles) is usually known to the system, future passenger demand is uncertain. There are two ways to handle uncertainty.
First, the point-prediction-driven optimization framework involves predicting the future demand and then producing rebalancing
decisions based on the predicted demand. Second, the data-driven optimization approaches directly prescribe rebalancing decisions
from data. In this study, a predictive prescription framework is introduced to this problem, where the benefits of predictive and
data-driven optimization models are combined. Based on a state-of-the-art vehicle rebalancing model, the matching-integrated vehicle
rebalancing (MIVR) model, predictive prescriptions are introduced to handle demand uncertainty. Model performances are evaluated
using real-world simulations with New York City (NYC) ride-hailing data under four demand scenarios. When demand can be
accurately predicted, a point-prediction-driven optimization framework should be adapted. The proposed predictive prescription
models achieve shorter customer wait times over the point-prediction-driven optimization models when future demand predictions

are not so accurate, and achieve a competitive performance with respect to the cutting-edge robust optimization models.

Index Terms—Data-driven Optimization, Predictive Prescriptions, Ride-hailing System, Vehicle Rebalancing

I. INTRODUCTION

Ide-hailing platforms are one of the most essential com-
ponents of the emerging Mobility-on-Demand (MoD)
system, which provides passengers with improved mobility
options through a traveler-centric multimodal urban trans-
portation system [1]. With the rapid growth of ride-hailing
platforms, such as Uber, Lyft, and DiDi, ride-hailing and
ride-sharing services have become increasingly popular all
over the world, especially in highly-urbanized regions. In
New York City (NYC), ride-hailing platforms transported on
average 15 million passengers per month in 2016, which was
approximately the same number of trips served by NYC’s
43,000 yellow cabs [2]. A recent survey indicates that 36%
of American adults have used a ride-hailing platform (Uber or
Lyft) in 2018, an increase from 15% in late 2015 [3].
However, ride-hailing platforms face significant challenges
with respect to operational efficiency. Despite having algorith-
mic pricing and matching strategies currently in place, drivers
from ride-hailing platforms spend an estimated 40% of the
time cruising without passengers in major cities [4]. With
technological advances in the field of autonomous driving in
the past decade, Autonomous Mobility-on-Demand (AMoD)
systems are becoming a reality. With a fleet of autonomous
vehicles (AVs), centralized control and planning of vehicles
become more vital to efficient operations [5].
One of the major operational decisions critical to the effi-
cient operations of ride-hailing systems is vehicle rebalancing,
where vacant vehicles are redistributed proactively to areas
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with anticipated high demand to reduce the discrepancy be-
tween spatial distributions of supply and demand during each
time period, therefore reducing customer wait times [6]-[10].

Since the future demand in ride-hailing systems is un-
known, performances of rebalancing decisions rely on both
the prediction accuracy of future demand and the uncertainty
considerations in subsequent optimization. Various machine
learning approaches have been developed to produce a point
prediction of future demand with high accuracy [11]-[15].
Subsequently, the decisions are made according to either the
nominal predicted demand, which is named point-prediction-
driven optimization, or an uncertainty set around the predic-
tion, which is termed robust optimization. Robust optimization
has been used widely for decision-making under uncertainty
and has been applied to the vehicle rebalancing problem in
[10]. However, a good demand prediction does not necessarily
lead to a good rebalancing decision. In the demand prediction,
all errors are considered the same, whereas in the rebalancing
problem sending additional vehicles to remote regions due
to overestimated future demand would incur a larger cost
compared to if the additional vehicles were to be sent to more
connected and central regions.

On the other hand, data-driven optimization directly pre-
scribes decisions from data. For example, stochastic optimiza-
tion has been commonly used for handling problems that
require making decisions under uncertainty in Operations Re-
search (OR) [16]. However, standard data-driven optimization
approaches, such as Sample Average Approximation (SAA),
do not utilize auxiliary information, which leads to an unac-
ceptable waste of good data. To combine ideas from ML and
OR while making use of all available observations and infor-
mation, a data-driven predictive prescriptions framework was
proposed to prescribe optimal decisions in decision making
under uncertainty [17].

In this paper, a novel data-driven optimization approach,
predictive prescription, is introduced into vehicle rebalancing
problems to generate better rebalancing decisions against
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demand uncertainty for ride-hailing platforms. The predictive
prescriptions are compared with the standard point-prediction-
driven optimization framework, stochastic optimization meth-
ods, and robust optimization methods. The contributions of
this paper can be summarized as follows:

« Introducing the predictive prescription framework into
solving the vehicle rebalancing problem in ride-hailing
operations.

o Applying the graph convolutional Long Short-Term
Memory (LSTM) and the station-based LSTM into pre-
dicting the future demand of ride-hailing systems. Sim-
ulations results indicate that prediction errors caused by
demand underestimation in predictive models can benefit
system performances.

e Using real-world simulations to compare model perfor-
mances of predictive prescription models with point-
prediction-driven optimization models under four differ-
ent demand scenarios. When demand prediction accu-
racy is low, predictive prescriptions outperform point-
prediction-driven optimization in terms of reducing av-
erage customer wait times. The edge of data-driven
optimization over point-prediction-driven optimization in-
creases when the supply to demand ratio increases. When
demand can be predicted accurately, point-prediction-
driven optimization is a better approach to adopt.

o Comparing predictive prescriptions with the robust
matching-integrated vehicle rebalancing (MIVR) model
proposed in [10]. Compared to the robust MIVR model,
predictive prescriptions achieve competitive performances
without relying on any additional information about the
future demand.

The remainder of the paper is structured as follows. Sec-
tion II reviews the relevant literature in vehicle rebalancing
operations, predictive models and data-driven optimization
approaches. Section III describes the basic MIVR model and
approaches for improving model performances regarding de-
mand uncertainty including predictive methods and data-driven
optimization approaches. Data used in this paper is discussed
in Section IV. Real-world simulation settings and empirical
results are shown in Section V, including performance com-
parisons between point-prediction-driven optimization models,
predictive prescription models, and robust models. Finally,
Section VI recaps the main contributions of this work and
provides future research directions.

II. LITERATURE REVIEW

A. Vehicle rebalancing

Rebalancing vacant vehicles is a critical operational strategy
for ride-hailing platforms in addition to matching customers
with drivers [18]. Due to the spatial imbalance of demand and
supply in ride-hailing systems, relocating idle vehicles to areas
where estimated future demand exceeds vehicle supply could
reduce empty miles traveled and customer wait times. An
online vehicle rebalancing algorithm developed in [7] led to a
37% reduction in the average customer wait times compared
to the scenario where no rebalancing took place.

The vehicle rebalancing problem is first studied in [19],
where an adaptive dynamic programming algorithm is pro-
posed for dynamic fleet management with single-period and
multi-period travel times.

Since then, various approaches have been proposed to
solve the vehicle rebalancing problem in ride-hailing systems.
Typical vehicle rebalancing problems discretize the operating
region into sub-regions and vacant vehicles are rebalanced be-
tween zones by solving a mathematical programming problem.
Wen et al. [9] utilized a reinforcement learning approach to
address the vehicle rebalancing problem in a shared MoD
system. Their proposed method reduced the fleet size by
14% in a real-world simulation in London. Jiao et al. [20]
proposed a practical framework based on deep reinforcement
learning and decision-time planning for rebalancing vehicles in
ride-hailing systems. Braverman et al. [21] designed a fluid-
based optimization model to model vehicles in ride-hailing
systems. Their proposed method resulted in a higher fraction
of passengers served compared to benchmark models. Miao et
al. [8] introduced a data-driven distributionally robust vehicle
rebalancing model to minimize the worst-case vehicle rebal-
ancing cost, which consists of vehicle rebalancing distance and
a service quality function indicating the balanced-ness between
supply and demand. Their approach was evaluated with real-
world taxi data in NYC and achieved a 30% reduction in idle
driving distance on average.

With the advent of autonomous vehicles, vehicle rebalanc-
ing problems have been studied extensively for AMoD systems
as well in recent years [5]. A fluid model was utilized to model
passengers and vehicles, and an optimal rebalancing policy
was developed by solving a linear program [22]. A queueing-
based theoretical model was also proposed to model the vehi-
cle rebalancing problem in the AMoD system. The algorithm
was designed to minimize the total number of rebalancing
trips while maintaining vehicle availability [23]. Iglesias et
al. [24] proposed a Model Predictive Control (MPC) algorithm
to compute rebalancing strategies by leveraging short-term
demand forecasts utilizing the LSTM neural networks. Their
proposed algorithm significantly reduced the average customer
wait time compared to the rebalancing strategy proposed in
[22]. In a shared AMoD setting, Tsao et al. [25] proposed
an MPC algorithm to optimize routes for both vacant and
occupied vehicles.

Besides, decentralized vehicle rebalancing systems were
proposed as contingency plans when AVs lost connections with
central dispatch systems. Chen et al. [26] proposed a decen-
tralized cooperative cruising method for offline operations of
AMoD fleets. Their proposed method shows significant per-
formance improvements compared to strategies with random-
selected destinations for rebalancing AVs under different fleet
sizes.

Most recently, Guo et al. [10] proposed a MIVR model,
introducing driver-customer matching component into the
vehicle rebalancing problem to produce better rebalancing
decisions. Robust optimization was used to better protect re-
balancing decisions against demand uncertainty. Their method
could reduce the average customer wait time by 18% compared
to approaches proposed in [21] under a real-world simulation
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with the NYC ride-hailing data.

One common modeling framework to handle demand uncer-
tainty is to predict and optimize in separate steps, in which a
prediction model is built first, followed by an optimization
model taking the outputs from the prediction model. Few
studies have considered combining prediction and optimization
into one framework. Al-kanj et al. [27] studied a sequence of
decision problems in a ride-hailing system with autonomous
electric vehicles, including vehicle dispatching (matching,
rebalancing, EV charging), surge pricing, and fleet size prob-
lems. They utilized value functions to represent the spatial
and temporal patterns of demand in order to incorporate the
downstream impact of a decision made now on the future.
The vehicle dispatching problem was modeled as a Markov
decision process and addressed with the approximate dynamic
programming (ADP) approach. Ramezani and Nourinejad [28]
proposed a taxi dispatching model using the model predictive
control approach. They incorporated the interrelated impact
of normal traffic flows and taxi dynamics when generating
dispatching decisions.

In summary, demand prediction and decision-making under
uncertainty are two flourishing topics being researched in
parallel. In this paper, we will first review literature in demand
prediction and decision making under uncertainty separately,
and then introduce a data-driven method that optimizes both
in one model.

B. Demand Prediction

In recent years, a lot of studies apply deep learning to fore-
cast ride-hailing demand. The state-of-the-art method is the
class of Convolutional LSTM (CNN-LSTM) models because
of their capacity in capturing the spatiotemporal travel demand
patterns. The appropriate variant of the CNN-LSTM model
used in travel demand predictions depends on the structure of
the problem. Standard CNN is designed to analyze quantities
on urban grids, and convolutions are defined with respect to
neighboring cells on an imposed artificial grid [11], [12]. Due
to the irregular shapes of taxi zones, graph neural networks
were used and different types of correlations between spatial
entities are defined by adjacency matrices [13]-[15].

All machine learning methods are concerned with selecting
the best estimators via Empirical Risk Minimization (ERM),
where weights of the network are obtained via gradient-based
algorithms such that the empirical average loss is minimized.
The loss functions are often standard, differentiable functions:
log-likelihood for predicting distributions, cross-entropy for
classification, and mean squared error (MSE) for regression.
However, this implicitly assumes that the losses for each
sample are equally weighted. For example, with an MSE loss
function, over(under)-predicting n people yield the same error
regardless of the actual demand. However, in downstream
applications such as vehicle rebalancing, the actual decision
loss of over(under)-predicting a certain amount of demand is
highly likely to be different.

C. Decision making under uncertainty in OR

The most widely-used method for decision-making under
uncertainty in downstream optimization tasks is stochastic

optimization [16]. One traditional method in stochastic op-
timization is Sample Average Approximation (SAA), where
empirical distributions are treated as the true distributions [29].
Another notable approach for decision-making under uncer-
tainty is robust optimization [30], and its data-driven vari-
ants [31], where the optimization task considers an uncertainty
set around the predicted values and optimizes the worst real-
ization. However, none of the optimization approaches men-
tioned here utilize auxiliary observations besides the uncertain
quantities.

To narrow this gap and combine ML with OR approaches,
Bertsimas et al. [17] proposed a predictive prescription frame-
work for decision making under uncertainty where auxiliary
observations and data are leveraged to prescribe optimal de-
cisions directly from data in the optimization model. In this
paper, the predictive prescription framework is introduced into
the vehicle rebalancing problem and it is compared with both
point-prediction-driven optimization models with advanced
LSTM networks, sample average approximation, and robust
optimization models.

III. METHODOLOGY
A. Matching-integrated Vehicle Rebalancing Model

In this section, we briefly describe the matching-integrated
vehicle rebalancing (MIVR) model proposed by Guo et
al. [10], which constitutes the optimization component of
proposed data-driven approaches in this paper.

The operational period is divided into 2 identical time
intervals indexed by k = 1,2, ..., (), where each time interval
has length A. The MIVR model is solved in a rolling-horizon
manner illustrated in Figure 1, where decision variables are
determined repeatedly at the beginning of each time interval. It
is worth mentioning that the MIVR model is a forward-looking
model incorporating « future time intervals. When solving the
MIVR model at the beginning of time interval k, including
the demand during time interval k, x future time intervals
are considered. Only the vehicle rebalancing decisions of the
current time interval £ will be implemented. Then the vehicle
locations are observed and submitted to the MIVR model as
inputs for the next time interval.

Additionally, the study area is divided into n sub-regions
(zones), where each sub-region ¢ has an estimated demand
Tzk > 0 at time k. We introduce two sets in this model: i) set
of sub-regions N = {1,...,n}, and ii) set of time intervals
K ={1,..,k}

For each time interval, the MIVR model performs two tasks:
i) vehicle rebalancing, which happens at the beginning of
each time interval, and ii) driver-customer matching, which
is conducted at the end of each time interval.

In the vehicle rebalancing phase, decision variables are
represented by xfj € R, denoting the number of idle vehicles
rebalanced from sub-region ¢ to sub-region j at time k. The
number of available vehicles in sub-region 7 at the end of
time interval k is indicated by S}’ € R... Let df;, w}; denote
the travel distance and time from sub-region % to sub-region
j at time k, respectively, which can be approximated by the
distance and travel time between the centroids of two sub-
regions. Let afj € {0, 1} denote whether an idle vehicle can be
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Historical Time

Current Decision Time Period (MIVR)

Future Time

Time Interval k l[ k-2 ][ k-1 ]l[ k ]---l[ k+a ][ k+5 ]

TimeIntervalk+1[ k-2 ][ k-1 ][ k ][ k+1 ]---

TimeIntervalk+2[ k-2 ][ k-1 ][ k ][ k+1 ][ k+2 ]---

Fig. 1: Example of rolling horizon manner for solving the MIVR model. The MIVR model is solved considering four future
time intervals (k = 4). Red intervals indicate the look-ahead window while green intervals represent the current decision time

intervals whose rebalancing decisions will be implemented.

rebalanced from sub-region ¢ to sub-region j at time k, where
afj = 0 if rebalancing between sub-regions ¢,j is feasible
at time k. The vehicle rebalancing from sub-region ¢ to sub-
region j at time k is feasible if the vehicle can be rebalanced to
the destination within the current time interval, i.e., wfj < A.
The feasibility constraint for vehicle rebalancing is given by:

aj;-xh; =0 Vi,j €N, Vk € K. )

In the MIVR model, since the actual quantity and detailed
locations of customers and vehicles are not available, the
matching component considers interzonal matchings based
on estimated demand. In the matching phase, the decision
variables are yfj € Ry denoting the number of customers
in sub-region ¢ matched with vehicles in sub-region j; at
time k. A maximum pickup time is imposed to guarantee
that customers do not experience excessive wait times. Let
w denote customers’ maximum pickup time and parameter
by, € {0,1} denote whether customers in sub-region i can
be matched with drivers in sub-region j at time k, where
bfj = 0 indicates a feasible interzonal matching. The matching
feasibility constraint is

by -yl =0 Vi,jE€N, Vke K. 2

The number of unsatisfied requests in sub-region ¢ at time
k is represented as TF € R, . Then constraints related to the
matching phase are:

Dy <SP VieN,Vke K

(3a)
j=1
oy <rf VieN,VkeK (3b)
j=1
Tf=ri=> yi; VieN,VkeK (30)

j=1

Constraints (3a) and (3b) restrict the number of interzonal
matchings by the number of available vehicles S¥ and es-
timated demand 7¥. The number of unsatisfied requests is
defined as Tf € R, by constraints (3c), which is the number
of customers who have not been assigned drivers within the
current matching phase.

To connect matching and rebalancing phases in the MIVR
model, we introduce the following decision variables and
parameters:

e V¥ € R, : number of vacant vehicles for sub-region i at

the beginning of time interval k.

o OF € R,: number of occupied vehicles for sub-region i
at the beginning of time interval k.

« V1 O}, Vi€ N: initial vehicle locations.

o P*(Pf): the probability that an occupied vehicle located
in sub-region 7 at time £ will be in sub-region j and stay
occupied at time k + 1.

o Q% i—“j): the probability that an occupied vehicle starting
in sub-region i at time k£ will be in sub-region j and
become vacant at time k + 1.

P* Q" are regional transition matrices describing the move-
ment of occupied vehicles. We approximate them with static
matrices estimated from historical data. The approach to
estimating these matrices and the limitations of such approx-
imations are discussed in [10].

Then, we specify the following relationships between
Sk, V¥, OF and decision variables zf;, yf;:

n

dal <V VieN, VkeK (4a)

j=1

SE=VF+> ali =D al; VieN, Ve K (4b)
j=1 j=1

VI =S =N Tyh+ > Q50 Vie N, Vk e K\ {x}
j=1 j=1

(40)

OF' =3 "y +> PLO) VieN, Vke K\{x}  (4d)
j=1 j=1

Constraint (4a) ensures that the maximum number of vehi-
cles in sub-region ¢ that can be rebalanced to other sub-regions
is the number of vacant vehicles at the beginning of time
intervals. Constraint (4b) states that available vehicles in sub-
region ¢ at time k consist of vacant and rebalanced vehicles.
Constraint (4c) shows that vacant vehicles in sub-region ¢ at
time k+1 are comprised of currently vacant vehicles at time %
and currently occupied vehicles that become vacant in the next
time interval. Constraint (4d) states that occupied vehicles in



> OJ-ITS-2021-09-0071.R2 <

sub-region ¢ at time k + 1 are comprised of currently vacant
vehicles that become occupied in the next interval as well as
currently occupied vehicles at time k.

The MIVR model minimizes the number of unsatisfied
requests and the total vehicle distance traveled, which consists
of vehicle rebalancing distance and vehicle pickup distance.
Let v indicate the penalty (in the unit of VMT') induced by
each unsatisfied request, and S defines the relative weighting
of rebalancing distance and pickup distance. The MIVR model
can be formulated as:

K n n
k gk .
c(z;r) = xr.dy min
vt 2 07 et
k=1i=1 j=1
K n K n n
k
1Y D T ZZZ% e
k=1 i=1 k=1i=1 j—1
Where

L(z,r) = {(y,T) € R™ """ ; Constraints(2), (3), (4)} :
2
and X = {:v eRY " Constraints(l)} .

To simplify the notation, we ignore auxiliary variables
S, V', O in problem (5) and only keep the rebalancing decision
vector x and two auxiliary decision vectors y,T". The demand
vector is denoted as r € R, which serves as the input
parameter of the MIVR model. The MIVR model is a linear
programming (LP) problem and can be solved efficiently by
off-the-shelf LP solvers, even for large-scale instances (e.g.,
n = 500).

Solving the MIVR model (5) requires the prediction of
demand r for future s time periods. Suppose we are given
historical data (2%, 7%),i = 1,...,m, where z° € R"X~*P
denotes the independent variables with p features, rt e RXE
is a demand vector which depends upon z°, and m is the
number of previous days whose information is provided in
the data.

For instance, if we are solving a MIVR model at 9:00
AM today and we would like to predict the future demand
r from 9:00 AM to 10:00 AM, we can utilize the historical
demand and features between 9:00 AM to 10:00 AM from
previous m days, i.e., {(2%,7%) : Vi = 1,...,m}, to predict the
demand today. Meanwhile, we also have access to a feature
vector z with exogenous information such as temperature and
precipitation for the time period to be predicted.

There are two ways that demand information can be in-
corporated into the model: point-predictions or data-driven
optimization. The former method follows a two-step approach
where a point prediction is first produced based on historical
observations and auxiliary data independent of the optimiza-
tion model. Then rebalancing decisions are made according to
the point predictions. Data-driven optimization methods, on
the other hand, directly prescribe rebalancing decisions from
historical observations and auxiliary data.

I'VMT stands for vehicle miles traveled.

B. Point-Prediction-Driven Optimization

In point-prediction-driven optimization, a predictive model
is first developed. Let f(-) represent such a predictive model
to predict the unknown demand vector r, i.e., f(z) = 7. f(-)
can be established based on the data {(z;,7;),i = 1,...,m}
with machine learning methods. The predicted demand 7 is
then fed into the MIVR model as 7 to get the rebalancing
decisions:

:ﬁpoint*pred - argmin C(m7 ’f’) (6)

xreX

Recent developments on short-term travel demand predic-
tion focus on capturing the spatial-temporal patterns of travel
demand using deep learning. The state-of-the-art architecture
is the class of Convolutional Long Short Term Memory (Conv-
LSTM) networks, where the standard LSTM is extended
by having a convolutional structure in both input-to-state
and state-to-state transitions [32]. Since sub-regions do not
conform to a grid structure, graph convolution proposed by
Kipf and Welling [33] is adopted instead of grid convolutions.

Suppose we have L, graph convolutional layers and the
output of the hidden layers is denoted as H M, 1= 1,...,Lg,
we have the following layer-wise propagation rule:

HEY = oD AD 2 HOW®) (7)

where o(-) is an activation function (most commonly
ReLU); D” E A” is the degree matrix; A=A+1 N IS
the adjacency matrix with added self-connections; and W (%)
is the trainable weights of layer [.

Graph convolution layers require upfront access to the
global structure of the graph in the form of adjacency matrices
(A). In this case, the Euclidean distance between the centroids
of the sub-regions is used to relate to neighboring sub-regions.

1

Al —
Al Euclidean Distance(i, ;)

®)

where Euclidean distance is defined as the straight-line dis-
tance between the centroids of sub-regions ¢ and j.

In addition to Graph Convolutional LSTM (Graph Conv-
LSTM), two LSTM networks without spatial convolution were
also constructed as benchmarks. Time series of past demand
in each zone are treated as inputs to the model and no spatial
correlation between zones is considered. The difference is
that in one model, named All Zones LSTM in subsequent
discussions, the temporal correlation between different zones
is assumed to be the same. Time series from all zones were
used to estimate the one-zone model. In the model named
Single Zone LSTM, one LSTM is separately trained for each
zone. Since All Zones LSTM is a subset of Single Zone
LSTM, it is expected that the predictive performance of All
Zones LSTM will be the worst among the three models.

C. Data-driven Optimization

Instead of producing a point estimate, there exist data-driven
optimization approaches that can prescribe decisions directly
from data. First, we consider a simple data-driven approach,
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SAA, in this section, which is used as a baseline model. Given
a finite sample of data, the SAA approach assumes that the
demand vector ¢ are drawn uniformly at random from dataset
{r*}™ . Therefore, the MIVR problem can be written as:

m
#944 = argmin 1 Z c(x;r?). )
zex M i—1

Although SAA accounts for the data uncertainty, it does not
utilize any auxiliary information described in {2}, which
incurs an unacceptable waste of good data. Therefore, we
introduce the predictive prescription approach to this problem.
Proposed in [17], this framework combines ML and OR
techniques and utilizes auxiliary information.

Compared to the traditional SAA approach where only de-
mand vectors {r*}"™, are considered for generating rebalanc-
ing decisions, the predictive prescription leverages auxiliary
observations {z°}, and solve the following problem:

(10)

where w;(z) stands for weight functions derived from
historical data {(z%,7%),i = 1,...,m} and current observation
z. The predictive prescription utilizes machine learning algo-
rithms to generate “smarter” weights compared to identical
weights used in the SAA approach.

In this paper, we introduce two machine learning algorithms
for generating weights [w;(z)]7",. The first algorithm is one
of the most commonly used unsupervised learning algorithm,
k-nearest-neighbors (KNN). The rebalancing decisions can be
generated by solving the following problem:

&5V (2) = argmin Z c(x;r?),
2EX N (2)

Y

where N (z) represents the set of &k data points that
are closest to =z, ie, Np(2) = {i = 1,.m
Sz -2 2 - =) < k)

The second algorithm considered in this paper is the optimal
regression tree (ORT) proposed in [34], which generates
a regression tree with better prediction accuracy than the
standard classification and regression tree (CART) approach.
The predictive prescription with ORT is formulated as:

>

:R(z")=R(z)

2977 (2) = argmin c(x; rh), (12)

reEX

where R(z) corresponds to the leaf of current observation
z in the ORT trained on the dataset.

I'V. DATA DESCRIPTION

The study area is the island of Manhattan in New York
City (NYC) and demand data used in this paper is the high-
volume ride-hailing trip data [35]. The data includes pickup
and drop-off times and locations for all trips made using
“high-volume” ride-hailing services, defined as any service
that dispatches more than 10,000 trips per day within New
York City, including Uber, Lyft, Juno, and Via. We use the data

from 20 workdays of June 2019 and the demand is aggregated
to 5-minute time intervals.

The sub-regions used in the experiments are “taxi zones”
defined within the high-volume ride-hailing trip dataset. There
are in total 63 taxi zones on the island of Manhattan. Real
travel speed data from June 2019 provided by the Uber
Movement database [36] is used for generating interzonal
travel times wfj The regional transition probability matrices
for occupied vehicles, Pk and Qk are generated based on the
real travel time and demand data, and details can be found in
[10]. Figure 2 shows the mean and standard deviation of daily
regional demand in Manhattan. Regions near lower Manhattan
have large standard deviations, which imply that accurately
predicting demand is not a trivial task when making vehicle
rebalancing decisions.

7000

1000

€000
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00

400

2000

200
1000

(a) Mean (b) Standard deviation

Fig. 2: Daily demand by zone (trips) in Manhattan.

The auxiliary information used in experiments for both

predictive and prescriptive models includes:

o Weather: hourly weather data, including air temperature,
sensible temperature, precipitation, and snowfall.

o Point of Interests (POIs): number of residential, educa-
tion, recreational, commercial, and health POIs.

« Public transit accessibility: number of subway stations
and bus stops.

« Historical demand: average demand from previous five-
time intervals and historical average demand from m
previous days.

Since POI and transit stops/stations are time-independent,

they are not used in predictive prescription models.

V. EXPERIMENTAL RESULTS

In this section, we compare model performances of the
following approaches: i) point-prediction-driven optimization,
ii) SAA, iii) predictive prescriptions and iv) robust MIVR
model proposed in [10], as well as two benchmark models: 1)
optimization with historical average and ii) optimization with
true demand under four different demand scenarios. Linear
programs in this paper are modeled with open-source Julia [37]
package JuMP [38] and solved with Gurobi 9.0 [39] on a
3.0 GHz AMD Threadripper 2970WX Processor with 128 GB
Memory.
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Fig. 3: Demand levels for four different demand scenarios.
Green histogram: true demand. Orange line: predicted demand
with Graph LSTM. Blue line: predicted demand with Single
Zone LSTM. Red line: predicted demand with All Zones
LSTM. Purple line: historical average demand.

A. Model Evaluation and Demand Scenarios

To evaluate model performances, we set the last weekday
(June 28th, 2019) in our dataset as the test day during
which vehicle rebalancing decisions need to be made without
knowing the true demand. Data for the previous 19 weekdays
are used to construct predictive models and serve as model
inputs for data-driven optimization models. Vehicle rebalanc-
ing models are evaluated with four different 2-hour demand
scenarios which are shown in Figure 3:

I Morning off-peak scenario (4 - 6): Total demand level is
low while point predictions are accurate.

IT Morning peak scenario (7 - 9): Total demand level is
high while point predictions are not accurate. Zone-based
LSTM underestimates the total demand level.

IIT Mid-day off-peak scenario (12 - 14): Total demand level
is high while point predictions are accurate.

IV Evening rush hour scenario (18 - 20): Total demand level
is high while point predictions are not accurate. Both
zone-based LSTM and graph-based LSTM underestimate
the total demand level.

The simulation framework is shown in Figure 4. The input
data includes road network for the Manhattan area with
shortest path distance and predecessor matrices, distance and
travel time matrices between taxi zones, regional transition
matrices, demand data, and weights for predictive prescrip-
tions. Parameters used in the simulation are shown in Table I.
Fleet size is set to be 2000 vehicles in the simulation. With
the setup described above, vehicle and demand locations are

Simulation
— Data Input
[E @—

Vehicle & Demand
Initialization

Update

______________________

i
I ——

R "\ R "
Vehicle [ _J Driver-Customer |
i

1 1

)

Rebalancing Engine :- I\ Matching Engine

Simulator

Output
Simulation Results

Fig. 4: Simulation framework for evaluating vehicle rebalanc-
ing models.

initialized. Vehicles are all available and equally distributed
to the taxi zones at the beginning of the simulation. Given
that origins and destinations of demand are at the sub-regional
level, road nodes within the sub-regions are randomly assigned
as origins and destinations for customers in each sub-region.

After initializing vehicle and demand locations, a simulation
consisting of a vehicle rebalancing engine and a driver-
customer matching engine is run with different rebalancing
models. In the simulator, a vehicle rebalancing problem is
solved at the start of each time period of length A and the
vehicle locations are updated before solving vehicle rebalanc-
ing problems. A separate driver-customer matching problem is
solved at the end of each time period of length § with avail-
able vehicles and realized demand. Details about the driver-
customer matching problem can be found in Appendix A.
The simulation outputs average customer wait time, unsatisfied
customer rate, average non-occupied VMT, and an average
number of rebalancing trips for the evaluation of different
rebalancing models.

B. Performance of Point Predictions

To ensure that there are enough training samples for neural
networks, we utilized additional workday demand data in April
and May 2019 in the model training stage. The hyperparam-
eters used in the LSTMs are shown in Table II.

Prediction accuracy for different LSTM models and the
benchmark historical average model for the full day are shown
in Table III. All machine learning models significantly outper-
form the historical average. Among the machine learning mod-
els, Graph Conv-LSTM has the most representation power,
therefore the training error was the smallest. The test set
performances for Graph Conv-LSTM and Single Zone LSTM
were similar. All Zones LSTM has the worst performance
since it does not differentiate demand from different zones.

For the prediction performance under each demand scenario,
the MAE is shown in Table IV. For both off-peak demand
scenarios (I and III), predictive models have higher prediction
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Model Parameter | Explanation Value
154 Weight parameter for pickup distance 1
¥ Penalty for unsatisfied requests 10?
Q Total number of time intervals in the simulation for each demand scenario 24
A Decision time interval length for vehicle rebalancing problem 300 (seconds)
6 Batch size for driver-customer matching problem 30 (seconds)
w Maximum pickup time 300 (seconds)
w Maximum wait time 300 (seconds)
n Number of sub-regions 63
K Number of look-ahead time intervals when solving MIVR model 6
m Number of historical data points 19
N, Number of vehicles 2000
TABLE I: Model parameters and values.
Hyperparameter Value LSTM model, a Single Zone LSTM, and an All Zones
# GCN layers 2 LSTM model for predicting future demand and generated
# Units in hidden layers 64 . . . .. . . . .
optimal vehicle rebalancing decisions with point estimations
# LSTM layers 1 . N . . .
Weight decay 0.005 by solving the problem (6). For optimization Wltb the historical
Learning rate 0.005 average, we used the average demand of m previous workdays

TABLE II: LSTM model setup.

Model Train MSE | Test MSE | Test MAE
Historical Average 23.18 29.73 3.64
Graph Conv-LSTM 15.63 16.64 293
Single Zone LSTM 16.84 16.52 2.93

All Zones LSTM 17.04 18.26 3.04

TABLE III: Prediction performance.

accuracy compared to peak demand scenarios (II and IV).
Meanwhile, higher demand leads to higher prediction errors.
For peak demand scenarios, zone-based LSTM underestimates
the overall demand. Graph-based LSTM only underestimates
the overall demand in scenario IV. In the next subsection, we
will show that making inaccurate predictions (demand under-
estimation) could potentially benefit the system’s performance.

Model Scenario I (MAE) Scenario II (MAE)
Historical Average 1.40 3.64
Graph Conv-LSTM 1.36 3.25
Single Zone LSTM 1.36 3.18
All Zones LSTM 1.40 3.28

Model Scenario III (MAE) | Scenario IV (MAE)
Historical Average 2.89 4.87
Graph Conv-LSTM 2.81 3.76
Single Zone LSTM 2.85 3.82
All Zones LSTM 297 4.20

TABLE 1IV: Prediction performances under four different
demand scenarios.

C. Performance of Different Vehicle Rebalancing Models

In this subsection, we compare the model performances
of point-prediction-driven optimization and data-driven op-
timization, along with two benchmark models: optimization
with historical average and optimization with true demand.
For predictive models, we constructed a Graph Convolutional

as point estimations and solved the problem (6). Similarly, the
optimization with true demand utilized the real demand as
point estimations and solved the problem (6).

Four data-driven models are considered. The SAA model
is included as a benchmark and three predictive prescription
models are tested: two KNN models (11) with £ = 5 and
k = 10, and an ORT model (12). Weights for m historical
days used in predictive prescriptions were generated in the
following way. First, a vector e € R™ is initialized with m
zero values. Then for each unique pair of zones and time
intervals, KNN or ORT algorithms were run with m historical
data points {z;,% = 1,...,m} and the current observation z,
After that, i-th value in vector e was increased by 1 if z;
is within & nearest neighbors of z or z; and z belong to the
same branch in the constructed ORT. Finally, the weights were
generated by normalizing vector e.

Figure 5 shows customer wait times and unsatisfied re-
quests, which are key performance indicators of a ride-
hailing system, under four demand scenarios. In each sub-
figure, colored bars represent the average customer wait time
after matching to vehicles while red dotted lines indicate the
customer unsatisfaction rate. To better understand how each
vehicle rebalancing model works under each demand scenario,
the average non-occupied VMT and the average rebalancing
trips for each vehicle are shown in Figure 6 and 7. In all
four demand scenarios, knowing the true demand leads to the
minimum average customer wait time compared to applying
any data-driven approaches. The performance comparisons
between data-driven optimization and point-prediction-driven
optimization vary across different demand scenarios.

In the morning off-peak scenario, the overall demand level
is low and all predictive models are more accurate compared
to other time periods. Under this demand scenario, point-
prediction-driven optimization outperforms data-driven opti-
mization since future demand predictions are very accurate.
Figure Sa indicates that data-driven optimization approaches
perform even worse than only knowing the historical av-
erage demand. On the other hand, data-driven optimization
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Fig. 6: Average non-occupied VMT for each vehicle under different demand scenarios.
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Fig. 7: Average number of rebalancing trips made for each vehicle under different demand scenarios.

approaches conduct much fewer vehicle rebalancing trips
according to Figure 7a. When combining with the average
non-occupied VMT for each vehicle shown in Figure 6a, we
know that data-driven optimization approaches distribute fewer
idle vehicles with longer distances. The poor performances of
data-driven optimization models imply that several days with
low demand levels are deemed more relevant by the model. To
summarize, when demand can be accurately predicted, point-
prediction-driven optimization should be used.

For the morning peak scenario, the overall demand level
is high and predictive models have large prediction errors.
Figure 5b shows the average customer wait time and customer
unsatisfied rate for each model. The customer unsatisfaction
rate is fairly close across all different models. Under this
demand scenario, data-driven optimization models perform
better overall compared to point-prediction-driven optimiza-
tion models. All four data-driven optimization models achieve
competitive performances with respect to the optimal case
in which true demand is known. For predictive models, the
graph-based LSTM has the worst performance while two zone-
based LSTMs have competitive performances compared to
data-driven optimization models.

It is worth mentioning that Graph LSTM has better predic-
tion accuracy than All Zones LSTM though it has a worse
model performance. The main reason for zone-based LSTMs
to have satisfying performances is that they underestimate
future demand, which is shown in Figure 3. Also from Figure
6b and 7b, less rebalancing trips and lower non-occupied VMT

imply the demand underestimation by zone-based LSTMs.
The “conservativeness” brought by the underestimation leads
to better system performances given high volatility in ride-
hailing demand. Being conservative is also the key reason
for the robust MIVR model proposed in [10] to have sat-
isfying performances. The simulation results justify that a
better demand prediction does not necessarily lead to a better
rebalancing decision. Meanwhile, underestimation is a more
desirable prediction error to make than overestimation when
predicting future demand for the purpose of distributing vacant
vehicles.

As for the mid-day demand scenario, the overall demand is
at a medium level while predictive models are more accurate
than the two peak demand scenarios. Under this demand
scenario, data-driven optimization models perform better over-
all compared to point-prediction-driven optimization models
based on Figure 5c. Figure 6¢ and 7c show that they conduct
similar number of rebalancing trips with similar distance. All
Zones LSTM performs worse than the model knowing the
historical average since it has a worse prediction accuracy.
When the demand prediction is not accurate enough, data-
driven optimization has a close edge over point-prediction-
driven optimization.

Under the evening rush hour scenario, the overall demand
level is high and predictive models have the worst perfor-
mances compared to the other three demand scenarios. In
this demand scenario, data-driven optimization and point-
prediction-driven optimization have similar performances re-



> OJ-ITS-2021-09-0071.R2 <

garding the average customer wait time and customer unsat-
isfaction rate according to Figure 5d. There are limited idle
vehicles that can be rebalanced due to a high demand level
in the evening rush hour scenario. Figure 7d indicates that
the average number of rebalancing trips performed for each
vehicle is nearly 1, while the number is over 3 for scenarios
II and III with high demand levels. Although data-driven
optimization performs better when demand predictions are not
accurate, the limited number of idle vehicles leaves no space
for data-driven optimization to improve system performances
by proactively balancing demand and supply.

Within four data-driven optimization models, predictive
prescription with KNN (& = 5) performs better than the other
three methods by having lower average customer wait times
across four demand scenarios. Meanwhile, for scenarios where
the demand level is high (morning peak, mid-day off-peak, and
evening rush hour), predictive prescription with KNN (k = 5)
utilizes the minimum VMT over rebalancing idle vehicles.
This performance superiority implies that sparsity is an ideal
property when applying data-driven optimization. Compared to
the predictive prescription with KNN-5, the other three models
incorporate more historical demand scenarios, which could
diminish the system performance if some demand scenarios
are significantly different from the future demand scenario
over which rebalancing decisions are made.

To summarize, there are two factors to consider when choos-
ing vehicle rebalancing models: i) supply to demand ratio,
and ii) demand prediction accuracy. When the demand can
be accurately predicted, point-prediction-driven optimization
models perform the best. When the demand is hard to predict
(for example, during rush hour), data-driven optimization
models perform the best. System performances can be further
improved if the supply to demand ratio is higher, where more
idle vehicles are available to be rebalanced. Compared to the
standard data-driven optimization approach, SAA, predictive
prescriptions perform better by leveraging auxiliary informa-
tion. On the other hand, when demand cannot be accurately
predicted, system performances can benefit from underesti-
mation, so fewer unnecessary rebalancing trips are made.
However, predictive models tend to aim for “unbiasedness”,
where the amount of overestimation and underestimation is
the same.

D. Comparison with the Robust MIVR Model

In this subsection, we compared the best performing
data-driven optimization model, prescriptive prescription with
KNN-5, with the robust MIVR model proposed in [10] under
the morning peak scenario. We evaluated performances of the
robust MIVR model under multiple uncertain scenarios defined
by uncertain parameters p and I' via the simulation described
in section V-A. Parameters p and I are parameters defining the
size of uncertainty set in the robust MIVR model, and details
can be found in Appendix B.

Figure 8 shows the percentage reduction of average cus-
tomer wait time for the robust MIVR model compared to
predictive prescription with KNN-5. Each cell indicates an
uncertain scenario (defined by parameters p and I') in the

robust MIVR model. Larger values of uncertain parameters p
and I' lead to more conservative rebalancing decisions (since
higher demand uncertainty is considered in the model). It is
worth mentioning that the uncertain parameter p significantly
influences the downstream matching performances, while the
effect of uncertain parameter I' is marginal.

In general, the predictive prescription with KNN-5 outper-
forms the robust MIVR model regarding the average customer
wait time. The robust MIVR model could achieve a similar
average customer wait time when larger demand uncertainty
is considered. On the other hand, the robust MIVR model can
satisfy more customers compared to the predictive prescription
with KNN-5, which is shown in Figure 9. More customers
can be satisfied when considering lower levels of demand
uncertainty. The additional customers served by the robust
MIVR model are “hard” customers which require longer
pickup distances, hence longer wait times. To summarize,
predictive prescriptions can reduce the average customer wait
time compared to the robust MIVR model. However, a small
proportion of customers will not be satisfied, which is likely
the reason behind reduced customer wait times.
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Fig. 8: Relative percentage reduction of average customer
wait time for the robust MIVR model compared to predictive
prescription with KNN-5.

Figure 10 displays the percentage decrease of average non-
occupied VMT for the robust MIVR model compared to
predictive prescription with KNN-5. When a certain level of
demand uncertainty is considered in the robust MIVR model,
it reduces the average non-occupied VMT for each vehicle.

Figure 11 exhibits the percentage reduction of average vehi-
cle rebalancing trips for the robust MIVR model compared to
predictive prescription with KNN-5. The robust MIVR model
significantly reduces the number of rebalancing trips dis-
patched in the system. Given that robust optimization generates
decisions optimal for the worst-case scenario, the robust MIVR
model is conservative and few rebalancing trips are made to
mitigate the impact of inaccurate demand estimations. On the
other hand, predictive prescriptions generate decisions that are
optimal for an expected scenario which indicates demand from
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Fig. 9: Absolute reduction of customer unsatisfied rate for the
robust MIVR model compared to predictive prescription with
KNN-5.
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Fig. 10: Relative percentage decrease of average non-occupied
VMT for the robust MIVR model compared to predictive
prescription with KNN-5.

previous m days. Therefore, they do not maintain the same
level of conservativeness as the robust MIVR model.

In conclusion, the robust MIVR model satisfies more cus-
tomers while conducting fewer rebalancing trips and predictive
prescriptions reduce the average customer wait time. From
a practical perspective, applying the robust MIVR model
requires decision-makers to choose an uncertainty level (p and
T") incorporated in the model for the future demand. While
for predictive prescriptions, additional information about the
future demand is not required to make rebalancing decisions.
Decision-makers should choose the appropriate model based
on data availability and confidence about the level of uncer-
tainty in the future demand.
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Fig. 11: Relative percentage reduction of average rebalancing
trips for the robust MIVR model compared to predictive
prescription with KNN-5.

VI. CONCLUSIONS

In this paper, we introduce a novel data-driven optimization
approach, predictive prescriptions, into the vehicle rebalancing
problem to handle demand uncertainty in the ride-hailing
system. Building upon a state-of-the-art vehicle rebalancing
model, MIVR proposed by Guo et al. [10], point-prediction-
driven optimization models and data-driven optimization mod-
els are proposed to improve the model performance against
demand uncertainty.

Regarding point-prediction-driven optimization models, a
graph convolutional LSTM and two zone-based LSTM models
are constructed in this paper to predict future demand for each
sub-region. As for data-driven optimization models, SAA and
predictive prescription with KNN and ORT are introduced in
this paper. A real-world simulation with NYC data is used to
evaluate performances for point-prediction-driven optimization
models, data-driven optimization models, and two benchmark
models, optimization with historical average and optimization
with true demand, under four different demand scenarios.

Between the data-driven optimization and point-prediction-
driven optimization models, one should make a decision
based on supply to demand ratio and the prediction accuracy.
When the future demand can be predicted accurately, point-
prediction-driven optimization models should be adopted.
When the demand is volatile and hard to predict, data-driven
optimization models perform better. The system performances
can be further improved for data-driven optimization models
when the supply to demand ratio is higher, indicating more
idle vehicles are available to be redistributed. Among all data-
driven optimization methods, predictive prescriptions perform
better by leveraging auxiliary information.

Meanwhile, prediction errors over the future demand in
the vehicle rebalancing problem can be beneficial to system
performances when errors come from demand underestima-
tion. The “conservativeness” brought by the demand under-
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estimation improves the system performance due to highly
uncertain demand in the future. The strong performances of
the robust MIVR model proposed in [10] are also brought by
the “conservativeness” embedded in robust models. However,
predictive models usually aim for “unbiasedness”, and weights
overestimation and underestimation equally. A possible future
research direction is to develop predictive models for ride-
hailing systems which have an asymmetric loss function that
favors underestimation over overestimation. Meanwhile, extra
benefits brought by conservativeness due to demand underesti-
mation should have a limit. Future research could identify such
underestimation level where the vehicle rebalancing benefits
the most.

The best-performing data-driven optimization model, pre-
dictive prescription with KNN-5, is also compared with the
robust MIVR proposed in [10], which utilizes robust opti-
mization techniques to protect rebalancing decisions against
demand uncertainty. The robust MIVR model reduces the
customer unsatisfaction rate while conducting fewer vehicle
rebalancing trips. On the other hand, predictive prescrip-
tions reduce the average customer wait time but serve fewer
customers. In practice, the robust MIVR model should be
utilized if knowing the demand uncertainty level in the future.
In general, predictive prescriptions can generate competitive
rebalancing decisions without knowing any additional future
demand information. Another future research direction can be
introducing data-driven robust optimization techniques into the
MIVR model, which combines the benefits of both data-driven
optimization and robust optimization.

From a practical perspective, rebalancing models need to
be selected ahead of schedule. When considering a whole
day’s demand, demand uncertainty and prediction accuracy
of predictive models change from time to time. Therefore,
a good operation strategy is to separate the whole opera-
tion period into high and low uncertainty periods based on
historical demand data. For low uncertainty periods, point-
prediction-driven optimization models should be adopted. As
for high uncertainty periods, data-driven optimization models,
including robust and predictive prescription models, can be
applied.

APPENDIX
A. Driver-Customer Matching Problem

In this section, the driver-customer matching problem uti-
lized in the simulation for evaluating the performances of
vehicle rebalancing models is described. Given locations for
available vehicles V = {v1,...,v,,} and locations for cus-
tomers who have requested a demand R = {riy,...,r,}, a
driver-customer matching problem is solved to assign customer
requests to drivers. Between a customer r; and a vehicle v;,
let d(r;,v;) and 7(r;,v;) represent the distance and travel
time for picking up the customer, respectively. A customer
will leave the system if the customer is not assigned to any
drivers within the maximum wait time w.

To solve the driver-customer matching problem, we first
construct a bipartite graph G = (V, E), where V. = RUV
and E = {e(r;,v;) : Vr; € R,Yv; € V,7(ry,v5) < w},

indicating that an edge exists between a vehicle and a customer
if the customer can be picked up by the vehicle within
the maximum pickup time. The cost of each edge e(r;, v;)
equals to the pickup distance, i.e., ce(r, ;) = d(7i,v;). The
decision variables for the driver-customer matching problem
are Te(r, ;) € {0,1} for each edge e(r;,v;) € E in the
bipartite graph G, and y,., € {0, 1} for each customer r; € R.
Te(r;,v;) = 1 represents that the customer ; will be picked up
by the vehicle v; in the optimal matching. y,., = 1 denotes that
the customer 7; can not be satisfied. Let Z(r;) represent the
set of edges connected to a customer vertex r; in G. Similarly,
let Z(v;) indicate the set of edges connected to a driver vertex
v; in G. The optimal driver-customer matching problem is
formulated as:

min. Y Celriaog)Telrivo) TV D Yns (132)
e(ri,v;)EE ri€R

s.t. Z Terpo) <1 Yo €V (13b)
e(ri,v;)€L(vj)

Z Le(r;,vj) +Yr; = 1 Vr;eR (13¢)
e(ri,vj)€ZL(r;)

Ze(ryvy) € {0,1} Ve(ri,v;) € E (13d)

yr, €{0,1} Vri €R (13e)

The objective function (13a) minimizes a generalized cost
for the driver-customer matching which consists of total
pickup distance and penalties for unsatisfied customers. y
is the penalty parameter for each unsatisfied customer. Con-
straints (13b) guarantee that each vehicle can only be matched
with at most one customer. Each customer is either assigned to
a vehicle or remained to wait in the system, which is ensured
by constraints (13c). Constraints (13d) and (13e) make sure
that the decision variables are binary.

B. Uncertainty Set in the Robust MIVR Model

In this section, we briefly describe the uncertainty set
utilized in the robust MIVR model, more details can be found
in [10]. Given the future demand rf of sub-region 7 at time k,
the uncertainty set in the robust MIVR model consists of a box
uncertainty set controlled by the parameter p and a polyhedral
uncertainty set defined by the parameter I'.

Let u¥ and oF represent the mean and standard deviation
of the demand in sub-region ¢ at time k from the historical
data, respectively. The box uncertainty set ¥ (p) is defined as

ko k
T T
k

a;

7k k.

Ui (p) = {Ti :

where p indicates the parameter controlling the difference

between historical average demand and future demand for each
sub-region ¢ at time k.

The polyhedral uncertainty set Z*(I") is defined as

gp} Vi€ N, Vk € K,
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where I' denotes the parameter ensuring that the overall
changes across all sub-regions at time k& should not exceed I'.
Then the complete uncertainty set ¢/ used in the robust MIVR
model is

n

U= QDdf(p)

N ﬁ uk(I)
k=1

Larger values of p and I lead to larger uncertainty set in
the robust MIVR model, which leads to more conservative
rebalancing decisions. Besides, decentralized vehicle rebal-
ancing systems were proposed as contingency plans when
AVs lost connections with central dispatch systems. Chen et
al. [26] proposed a decentralized cooperative cruising method
for offline operations of AMoD fleets. Their proposed method
shows significant performance improvements compared to
strategies with random-selected destinations for rebalancing
AVs under different fleet sizes.
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