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ABSTRACT 1 
As Transportation Network Companies (TNCs) have expanded their role in U.S. cities recently, their 2 
services (i.e. ridehailing) have been subject to scrutiny for displacing public transit (PT) ridership. 3 
Previous studies have attempted to classify the relationship between transit and TNCs, though analysis 4 
has been limited by a lack of granular TNC trip records, or has been conducted at aggregated scales. This 5 
study seeks to understand the TNC-PT relationship in Chicago at a spatially and temporally granular level 6 
by analyzing detailed individual trip records. An analysis framework is developed which enables TNC 7 
trips to be classified according to their potential relationship with transit: complementary (providing 8 
access to/from transit), substitutive (replacing a transit alternative), or independent (not desirably 9 
completable by transit). This framework is applied to both regular operating conditions and to early stages 10 
of the COVID-19 pandemic, to identify the TNC-PT relationship in these two contexts. We find that 11 
complementary TNC trips make up a small fraction of trips taken (approximately 2%), while potential 12 
independent trips represent 48% to 53% and potential substitution trips represent 45% to 50%. The 13 
percentage of substitution trips drops substantially following COVID-19 shutdowns (to around 14%). 14 
This may be attributed to a reduction in work-based TNC trips from Chicago’s north side, indicated by 15 
changes in spatial distributions and flattening of trips occurring during peak hours. Furthermore, using 16 
spatial regression, we find that an increased tendency of TNC trips to substitute transit is related to a 17 
lower proportion of elderly people, greater proportion of peak-period TNC travel, greater transit network 18 
availability, a higher percentage of white population, and increased crime rates. Our findings identify 19 
spatial and temporal trends in the tendency to use TNC services in place of public transit, and thus have 20 
potential policy implications for transit management, such as spatially targeted service improvements and 21 
safety measures to reduce the possibility of public transit being substituted by TNC services.   22 
 23 
Keywords: Transportation Network Companies, ridehailing, public transit, substitutive, complementary, 24 
independent 25 
 26 
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1 Introduction 1 
The public transit (PT) system has been disrupted by the explosive growth of TNC (or 2 

ridehailing) services. As a result, recent years have witnessed declining transit ridership and monthly 3 
transit pass sales, and TNCs are generally considered one of the contributing factors (Rayle, et al., 2016; 4 
Henao, 2017; Graehler, et al., 2019). The Chicago Transit Authority (CTA) has identified this disruption 5 
as well, stating in its 2018 Annual Ridership Report that “Ridership in 2018 was affected by relatively 6 
low gas prices and competition from ride hailing companies like Uber and Lyft” (CTA Ridership 7 
Analysis and Reporting, 2019).  8 

 9 
While the convenience of TNCs certainly causes some riders to replace transit trips with TNC 10 

trips, there are cases where TNCs might enable easier access to PT or might serve trips that occur at times 11 
and places where PT is inaccessible or inefficient (Murphy, 2016; Hall, et al., 2017). This calls for some 12 
nuance and specificity to the discussion of the relationship between TNCs and PT. An improved 13 
understanding of this relationship could better inform public transit management, to make transit a more 14 
competitive option and thereby regain ridership.  15 

 16 
Therefore, the goal of this paper is to understand the substitutive, complementary, or independent 17 

relationship between TNC and PT services on a spatio-temporally granular scale. Partnering with the 18 
Chicago Transit Authority (CTA), this study uses a broad mix of data sources (e.g. TNC trip records, 19 
automated transit operating data, transit service schedules, and other geospatial data), and develops a 20 
framework to analyze the TNC-PT relationship by classifying each TNC trip as potentially 21 
complementary to, substitutive for, or independent from PT. Using this framework, different periods of 22 
significance are evaluated and compared to better understand how the TNC-PT relationship has evolved 23 
due to the COVID-19 pandemic in March 2020.  24 

 25 
Specifically, this study investigates three main topics of research which build incrementally on 26 

each other. First, we develop a generally applicable approach which may be used to classify the 27 
substitutive, complementary, or independent relationship of TNC trips with public transit, and apply the 28 
method to quantify both the aggregate nature of this relationship and spatial and temporal patterns in it 29 
under ordinary operating conditions. Second, we apply regression modelling to further examine the nature 30 
of the TNC-PT relationship on a more granular scale, assessing explanatory variables in demographics, 31 
the built environment, and the TNC and PT networks. Finally, we apply the method to investigate how 32 
this relationship evolves during the initial stages of the COVID-19 pandemic in Chicago. 33 

 34 
By identifying this relationship between TNC trips and public transit and investigating spatial and 35 

temporal trends, this research will facilitate detailed, route-level planning and policy analysis. Strategies 36 
such as targeted management of transit services may be employed to encourage transit as an alternative to 37 
TNC trips which contribute to congestion and hinder transit operations, while transit routes may be added, 38 
frequency may be modified, or safety measures may be implemented to provide a stronger transit 39 
alternative in key areas.  40 

 41 
The rest of the paper is organized as follows. Section 2 reviews the state of research on the TNC-42 

PT relationship and the impacts of the COVID-19 pandemic on travel behavior for both modes. The data 43 
and methods are described in section 3. Section 4 presents and discusses the findings. Finally, Section 5 44 
summarizes the most salient conclusions and sets the stage for future expansion upon this work.  45 

 46 
  47 
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2 Literature Review 1 
 2 

2.1 TNC-PT Relationship 3 
Previous studies have used surveys, statistical models, and simulations to study the TNC-PT 4 

relationship, and indicate the complexity of the relationship between TNCs and PT. It seems clear from 5 
existing research that the relationship may take many different forms depending on context, and is both 6 
highly sensitive to the city’s existing infrastructure and to regulatory action taken by local governments.  7 

 8 
The concept of substitution, complementarity, and independence of two products/services is well-9 

studied in microeconomics using the concept of cross elasticity of demand1. Although effective for 10 
distinguishing products at an aggregate scale, it cannot capture the variability of TNC-PT relationship 11 
across space and time. To address this challenge, this paper adopts and develops a methodology for 12 
investigating this TNC-PT relationship with spatial and temporal granularity.  13 

 14 
Several survey-based studies have previously examined the TNC-PT relationship, typically 15 

asking riders questions such as “If ridesourcing is not available, what other transportation modes would 16 
you use?”. Findings often vary by context: Rayle et al. (2016) concluded that 33% of TNC trips replace 17 
PT via their surveys in San Francisco on 380 TNC riders; research by Gehrke et al. (2018) on 1000 riders 18 
in Metro Boston showed that 42% of riders would have used transit if TNC was not available; Henao 19 
(2017) estimated this value as 22.2% based on his survey on 311 TNC riders in Denver. Similarly, the 20 
complementarity relationship between TNC and PT is often examined by estimating the percentage of 21 
TNC trips taken by riders for transit connection. For example, one study conducted in California by King 22 
et al. (2020) used National Household Travel Survey data and suggested that approximately 11% of for-23 
hire vehicle tours include first/last mile transit access; Gehrke et al. (2018) estimated this value as 9% for 24 
home-origin trips and 4% for home-destination trips (when including airports as transit); Henao (2017) 25 
found that only 5.5% of surveyed TNC trips connected to another mode and only 1% of trips used a TNC 26 
trip to access transit in place of driving from origin to destination. These survey-based findings are 27 
successful in examining individual decision making, but are very time- and labor-consuming, and may 28 
often be limited due to biased sampling and questions or small sample sizes.  29 

 30 
Other research has employed big data analytics and statistical models: Hoffmann et al. (2016)  31 

found that TNC trip volumes increase by over 30% when there is a subway disruption; Hall et al. (2017) 32 
found that transit ridership increased by 5% within two years after Uber enters the market; while a study 33 
by Graehler et al. (2019) estimated a 1.3% decrease in heavy rail ridership and a 1.7% decrease in bus 34 
ridership for each year after TNC services enter the market. Erhardt et al. (2021) use aggregated TNC 35 
records and APC-inferred transit ridership to form a fixed effects panel data regression model, which 36 
estimated that TNC services caused a 10.8% decline in bus ridership in San Francisco in 2015, but no 37 
significant impact on light rail ridership. Grahn et al. (2020) also use APC-inferred transit boardings, in 38 
conjunction with surge pricing-based data indicating events of high TNC demand, applying a linear 39 
regression model to find that four of ten observed locations saw a significant change in bus boardings 40 
during periods of high TNC use. Such research is effective in capturing the overall effect of the TNC 41 
relationship by studying a large sample, but only captures the aggregate TNC-PT relationship across the 42 
whole study area without distinguishing granular spatial or temporal trends. Specifically in Chicago, 43 
Barajas & Brown (2021) studied TNC pick-up and drop-off locations to investigate the potential for the 44 

 
1 The cross elasticity of demand (𝐸!!,#"), calculated as:  

𝐸$,% =
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#"

, 
where 𝑃! is the price of good A, and 𝑄" is the quantity demanded for good B. In this framework, substitution is 
defined as 𝐸!," > 0, complementarity is defined by products for which 𝐸!," < 0, and independence is the case 
where 𝐸!," = 0. 
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services to provide access to “transit deserts” (areas not adequately served by public transit). However, 1 
the study finds that TNC services are more associated with areas of higher transit coverage and household 2 
income than with “transit deserts.”   3 

 4 
Young et al. (2020) use a sample of 1,578 TNC trip records obtained through the 2016 5 

Transportation Tomorrow Survey in Toronto, to investigate the relationship between TNC services and 6 
transit. The study compares travel times with hypothetical transit alternatives and investigates correlations 7 
with various factors using OLS and logistic regression models. The paper finds that 31% of TNC trips 8 
have a competitive transit alternative, and that these competitive trips are correlated with peak-period and 9 
downtown travel. This study builds upon these results by investigating a larger dataset (40,000 trips per 10 
day over eight days of analysis) and differentiating TNC trips which may provide a first-mile or last-mile 11 
connection to transit services. Methodologically, both studies conduct travel time comparisons between 12 
real-world TNC trips and a hypothetical transit alternative using OpenTripPlanner and GTFS transit 13 
schedules, however the method of travel time comparison differs. While Young et al. (2020) use both 14 
proportional and absolute differences between TNC and transit travel times and apply the two separately, 15 
this study uses a combined proportionate and absolute approach based on the travel time of the TNC trip, 16 
as described in Section 3.2.1.3. Additionally, this study performs geographic (buffer) analysis and first 17 
mile/ last mile analysis to differentiate TNC trips which may connect with a transit station.  18 

 19 
To inform TNC regulation and transit management, we examine the TNC-PT relationship at a 20 

nuanced spatial and temporal scale. Two previous studies have attempted to understand the substitution 21 
effects of each TNC trip on PT on this scale, but both were limited by data availability (Jin et al., 2019; 22 
Kong et al., 2020). In this study of Chicago, TNC trip data is available at a spatially granular level, along 23 
with comprehensive transit data through General Transit Feed Specification (GTFS). This enables us to 24 
examine the TNC-PT relationship thoroughly and to draw confident conclusions which may be 25 
operationalized by the transit agency (i.e. CTA) and urban planners. The analysis framework developed in 26 
this study aims to determine the potential relationship between each TNC trip and the public transit 27 
system (substitution, complementary, or independent) at a disaggregated level, and could be applied 28 
generally to other study areas. 29 

 30 
2.2 Impacts of COVID-19 on Travel 31 
 In addition to the immeasurable impacts of COVID-19 on all facets of life in cities, the pandemic 32 
has dramatically changed travel behavior in North America. Ridership for major transit agencies has 33 
plummeted following its onset, in attempts to enable social distancing and reduce transmission. Following 34 
Illinois’ stay-at-home order on March 21st, 2020, ridership for the Chicago Transit Authority (CTA) 35 
reduced by 84% for rail and 72% for bus from pre-COVID levels by the end of March 2020 (CTA 36 
Ridership Analysis and Reporting, 2020).  37 
   38 

Transportation Network Companies (TNCs) have also been impacted by COVID-19. Prior to the 39 
pandemic, the number of daily TNC trips in Chicago had rested steadily above 400,000 per day, but 40 
dropped rapidly following stay-at-home order on March 21st, 2020, to 86,586 on March 24th, 2020 and 41 
stabilize below 50,000 for the remainder of March 2020 (Chicago Data Portal, 2020). 42 

 43 
Outside of Chicago, many studies have examined the dramatic impacts of COVID-19 on travel 44 

behavior. Several studies identified dramatic ridership drops in various major cities, while finding that 45 
many socioeconomically disadvantaged communities maintained greater levels of transit ridership during 46 
the pandemic, likely due to limited alternative travel options and disproportionate likelihood of working 47 
in essential jobs which could not be conducted remotely (Brough, et al., 2021; Wilbur, et al., 2020; Sy, et 48 
al., 2020; Hu & Chen, 2021). In a study of New York City and Seattle, Gao et al. also found a dramatic 49 
reduction in both transit and traffic demand (2020). Lessened congestion has resulted in higher traffic 50 
speeds and higher crash fatality rates, posing new dangers to all road users. Additionally, discrepancies in 51 
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mode use recovery rates between transit and private vehicles lead the authors to conclude that mode shift 1 
has occurred. Based on analysis of Chinese cities which are several months further in their recovery, Gao 2 
et al. predict that transit system recovery will be slow (2020). 3 
 4 

Although both TNCs and PT have been closely studied during the COVID-19 pandemic, the 5 
evolution of their relationship is lacking in academic literature. This study examines the change of TNC-6 
PT relationship in the early stages of COVID-19, to understand the ever-changing landscape of urban 7 
mobility during the pandemic and provide implications for regulatory response and PT management.   8 

 9 
3 Data and Methods 10 
 11 
3.1 Data and Case Study 12 

The case study was conducted in the City of Chicago to evaluate the change in the TNC-PT 13 
relationship under ordinary conditions and over the early stages of the COVID-19 pandemic. Four sample 14 
dates before the outbreak of COVID-19 (October 8, 2019, November 19, 2019, January 21, 2020, and 15 
January 28, 2020) are used to examine the TNC-PT relationship under regular operating conditions. The 16 
dates were chosen across multiple seasons to mitigate the influence of seasonality. Four sample dates after 17 
the COVID-19 shutdowns (March 24, 2020, March 31, 2020, May 12, 2020, and June 2, 2020) are used 18 
to examine the relationship in the COVID-19 pandemic, first near the beginning of the stay-at-home order 19 
(active on March 21, 2020) and later as travelers react to the policy change and adjust their behaviors. In 20 
selection of these analysis dates, comparison was kept consistent across day of the week (Tuesday), to 21 
avoid influence from any cyclic fluctuations in daily travel behavior. Days with moderate weather (no 22 
precipitation or extreme temperatures) were chosen to minimize any external influence, and selected dates 23 
were checked by CTA planners to ensure that they did not represent anomalies in system operation or 24 
ridership.  25 
 26 
Five categories of data were collected for this study, explained as follows: 27 

(1) TNC trip data contain timestamps and locations of pick-up and drop-off for trips on major 28 
ridehailing companies, at a level of spatial resolution sufficient to perform detailed analysis. A 29 
separate, public version of the dataset, with origin and destination locations aggregated, is 30 
available through the Chicago Data Portal (2020). The data include all physically completed TNC 31 
trips as reported by Transportation Network Companies to the City of Chicago as part of routine 32 
reporting required by ordinance. A 40,000-trip subset was randomly sampled for each of the eight 33 
selected study dates. The distributions of the selected samples were compared with their 34 
respective populations to ensure that results would not be skewed significantly due to the 35 
sampling process (Appendix A). 36 

(2) GTFS transit schedule data provides stop locations and scheduled vehicle arrival times for transit 37 
services.  38 

(3) Point of Interest (POI) data was downloaded from OpenStreetMap for the FMLM analysis (see 39 
section 3.2.1.2) and regression modeling.  40 

(4) CTA Parking Lot data including geographic location and lot capacity was used for FMLM 41 
analysis (see section 3.2.1.2) and is provided publicly on the Chicago Data Portal.  42 

(5) Socio-demographic data at the census-tract level was used for regression analysis, including race, 43 
age, education, vehicle ownership, foreign born, income, and population (from the American 44 
Community Survey 2019 5-year estimates),Walkability Index (from the U.S. EPA), and crime 45 
rate (from the Chicago Data Portal).  46 

 47 
3.2 Methods 48 
3.2.1 TNC-PT relationship recognition 49 

This study seeks to adapt and further develop the analysis process introduced by Kong et al. 50 
(2020). Thanks to the better data availability and collaboration with the CTA, this paper improves the 51 
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methodology from three perspectives. Firstly, the previous study is only able to recognize the substitutive 1 
TNC-PT relationship, but this paper distinguishes all three types of relationship (i.e. substitutive, 2 
complementary, and independent), which could provide more significant policy implications. Second, 3 
data limitations on detailed transit scheduling are overcome in this study thanks to a wealth of data access. 4 
The COVID-19 pandemic case study also provides an opportunity to examine a dramatic change in travel 5 
behavior, and how this change is reflected in the TNC-PT relationship. This research was also developed 6 
through ongoing consultation with planning experts at the CTA, which allowed us to develop criteria that 7 
reflect significant factors in transportation policy and transit operation. 8 

 9 
The overall intention of the method developed is to create a process of analysis which categorizes 10 

TNC trips according to their potential relationship with PT: substitution, complementarity, or 11 
independence. In effect, these types of relationship are essentially a continuum which varies according to 12 
individual experience. For this study, discrete categorizations are employed based on established 13 
methods. These three concepts are defined as follows:  14 

 15 
• Substitution: TNC trips for which PT provides a desirable alternative mode of travel (within 16 

a comfortable walking distance to transit and at comparable travel time).  17 
• Complementarity: TNC trips which provide a first-/last-mile connection to transit (either 18 

bringing passenges to or carrying them from the PT network)  19 
• Independence: TNC trips which operate between OD pairs where there is no transit service 20 

available. Some researchers describe this situation as complementarity since TNCs fill in the 21 
‘transit desert’, but in this study we define it as ‘independence’ to differentiate it from case 22 
when TNC serves a first-/last-mile connection to transit. 23 

 24 
The overall analysis framework is shown in Figure 1, following a rule-based classification system 25 

with three rules. The set of TNC trips is processed through three levels of analysis, comparing each trip 26 
with its potential alternative transit trip(s) taken from the same origin to the same destination, at the same 27 
time. These three levels of analysis include: buffer analysis (to determine whether a TNC trip is 28 
geographically within the transit service area, as described in Section 3.2.1.1), first mile/last mile analysis 29 
(to assess whether a TNC trip is providing access to transit connections, as described in Section 3.2.1.2), 30 
and service quality analysis (to estimate whether the potential alternative transit trip(s) would provide an 31 
acceptable quality of service, as described in Section 3.2.1.3).  32 

 33 
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 1 

 2 
Figure 1 Overall analysis framework for determining the TNC-PT relationship (Note: ‘A’, ‘B’, and 3 
‘C’ refer to buffer analysis zones, FMLM refers to First Mile/Last Mile Analysis, ‘TT’ refers to travel 4 
time) 5 

 6 
3.2.1.1 Buffer (Coverage) Analysis 7 

Firstly, buffer analysis is used to compare the TNC trip origin and destination with public transit 8 
network coverage. As illustrated in Figure 2, three types of transit coverage areas are identified: (1) 100m 9 
circular buffer zones are defined as areas wherein trips could possibly provide access to or from the 10 
transit stop, thus potentially serving first or last mile connections (denoted as zone A), since the 11 
origin/destination of the TNC trip is close enough to the transit stop (Williams, 2017; Jin, et al., 2019); (2) 12 
a buffer distance between 100m to 400m (denoted as zone B) is used to identify TNC trips that possibly 13 
substitute transit, since this is a comfortable walking distance to transit based on existing literature 14 
(Demetsky & Bin-Mau Lin, 1982; Murray, et al., 1998; Wu & Murray, 2005; Hawas, et al., 2016) while 15 
not close enough to transit stops to provide the first/last mile connection;  the area outside of the 400m 16 
buffer is denoted as zone C, and TNC trips whose origin or destination is in this area are considered not to 17 
be covered by transit. TNC trips are categorized as substitution/complementary/independence according 18 
to the location of their origins and destinations in zone A, B and C, as represented in Figure 1:  19 

• Scenario 1: A à C, or C à A. The origin of the TNC trip is close enough to transit stop 20 
(zone A) that the trip is potentially complementary while the destination is outside of transit 21 
service, or vice versa. The trip is thus not served by transit, so FMLM analysis is used to test 22 
for complementarity. If this is not the case, the trip is independent since either its origin or 23 
destination is not covered by transit.  24 

• Scenario 2: A à A, A à B, or B à A: Origin/destination is close enough to transit service 25 
(zone A) that the trip is potentially complementary, and the trip is served by transit. FMLM 26 
analysis is used to test for complementarity. Travel time and transfer analysis is used to test 27 
for substitution (since both origin and destination are within transit coverage), and if not 28 
considered substitution then the result of the FMLM analysis is used. 29 

• Scenario 3: B à B: Origin and destination served by transit but not close enough to be 30 
considered complementary, so travel time and transfer analysis is used to test for substitution.  31 



 

9 

• Scenario 4: B à C, C à B, or C à C: Origin/destination outside of transit service and not 1 
potentially complementary (within an zone A), so the trip is classified as independent.  2 

 3 

 4 
Figure 2. Sample schematic diagram of buffer analysis zone classifications 5 

 6 
3.2.1.2 First Mile/ Last Mile (FMLM) Analysis 7 
 The TNC trips categorized in Scenario 1 and Scenario 2 in buffer analysis are potentially 8 
complementary to PT. However, it is also possible that these TNC trips access other facilities near the 9 
transit stops instead of the transit system. Therefore, first mile/last mile (FMLM) analysis is employed to 10 
determine an approximate likelihood that a given TNC trip originated from or terminated at a PT station. 11 
Recognizing that the decision to conduct a multi-leg transit and TNC trip is dependent on several 12 
individual factors which cannot be fully captured at this level of analysis, a likelihood is assigned rather 13 
than an arbitrary categorization. Therefore, in the process of estimating this step, a fraction of a single trip 14 
is considered complementary, while the remainder is considered as either independent or substitutive.  15 
 16 
 To estimate the likelihood that a TNC trip is used to connect riders to PT instead of accessing 17 
non-transit activities near transit stops, we predict the level of non-transit activity immediately around 18 
each station. Open Street Map (OSM) POI data2 is used for this process. The ‘attraction power’ (or 19 
number of potential attendees) and likely operating hours are assigned to each POI (Appendix B in 20 
Supplementary Materials). These values are estimated using professional judgement and in consultation 21 
with planners, though admittedly it is a subjective and approximate approach. For each TNC trip, the total 22 

 
2 The data is further refined by removing non-significant attractions (e.g. garbage bins, vending machines, 
mailboxes). 
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attraction power (𝑎(𝑃𝑂𝐼)) of all points of interest which are operating at the time of the trip is summed 1 
across a 100m buffer around the station (Σ'(()𝑎(𝑃𝑂𝐼)). Using this, the likelihood of complementarity 2 
(%*+),) is assigned between 0 and 1 on a linear scale, according to the fraction of this attraction power 3 
compared with a selected ‘maximum’ attraction power from a downtown station (𝑎-+./0+./), at which 4 
activity level it would be unlikely for TNC trips to access the transit system:  5 

%*+), = max/1 − 1#$$%2(!45)
2&'()*'()

, 04                                                      (1) 6 
 7 

There are two exception cases to this general formulation, determined for particular situations in 8 
consultation with CTA planners. The first is to filter downtown origins and destinations. TNC trips which 9 
are in the ‘loop’ downtown area of Chicago, as well as approximately one station outside of it on each 10 
line, are considered not to be complementary. This decision was made because rail services are so 11 
pervasive in the downtown area and so many alternative destinations are available near each stop that for 12 
any given TNC trip it is extremely unlikely that a rider would be accessing transit services. Second, TNC 13 
trips that originate from or terminate at stations with one of the 17 CTA parking lots are considered more 14 
likely to be complementary, due to the frequent use of these stations for first or last mile transit 15 
connections. Based on the parking capacity, surrounding built environment, and potential alternative 16 
destinations near the station, each station with parking was assigned a percentage that represents the 17 
likelihood of TNC trips to it being complementary to PT.  18 

 19 
In cases where the likelihood of complementarity is a fractional value, fractional classification of 20 

trips is allowed. For instance, a trip with %𝑐𝑜𝑚𝑝 = 0.6 would be treated as 0.6 trips which passed the 21 
analysis, and 0.4 trips which did not. This is used to obtain the most accurate possible estimate on the 22 
aggregated spatial scale which is analyzed.  23 

 24 
Due to the subjectivity involved in the FMLM analysis method, the results were further 25 

investigated by cross-referencing external sources (i.e., CTA survey data), to ensure that the results fell in 26 
sensible ranges and did not constitute an extreme overestimation or underestimation. Additionally, an 27 
upper bound on the complementary trips percentage is calculated (provided in Section 4.1). To compute 28 
this estimate, all assumptions of the FMLM analysis process are removed. Trips classified in Scenario 1 29 
or Scenario 2 of buffer analysis are assumed to connect to PT. Thus Scenario 1 trips are directly labelled 30 
as complementary, and Scenario 2 trips are passed directly to service quality analysis. This provides an 31 
approximate ceiling on the estimated number of complementary trips.   32 
 33 
3.2.1.3 Service Quality (Travel Time and Transfer) Analysis 34 
 The final stage is quality of service analysis, which determines whether a hypothetical transit trip 35 
(conducted in place of the TNC trip that was taken) provides an acceptable level of service to be 36 
considered a viable alternative. While quality of service may be determined using a wide variety of 37 
criteria (such as travel time, transfers, fare costs, vehicle crowding, service frequency, wait times, and 38 
reliability), data availability limitations necessitate that this paper approximates quality of service using 39 
transit travel time and number of transfers. Thus for the case study application, the analysis is referred to 40 
as “travel time and transfer analysis.” Additional service quality factors may be incorporated into future 41 
research using the same high-level analysis framework.  42 
  43 
 Travel time and number of transfers were determined using a local instance of OpenTripPlanner, 44 
based on daily GTFS schedules. This approach was chosen among alternative approaches developed by 45 
Li et al. (2021), including real-time vehicle arrivals from Automated Vehicle Location data, and inferred 46 
passenger trip records from Origin-Destination Inference data, due to its ease of implementation and 47 
scalability to a large set of trips.  48 
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 1 
 Travel time comparison was conducted using two methods: proportional difference and absolute 2 
difference. Proportional difference measures the ratio of the transit travel time (𝑡!7) to the TNC travel 3 
time (𝑡789) according to Δ𝑡, = 𝑡!7/𝑡789 , whereas absolute difference measures the difference between 4 
the two, as Δ𝑡2 = 𝑡!7 − 𝑡789 . Based on sensitivity analysis (Appendix C) and in consultation with CTA 5 
planners, a hybrid approach to the threshold for Δ𝑡 was selected: for TNC trips with duration less than 15 6 
minutes, an absolute difference of 15 minutes was used as the threshold, while for TNC trips lasting more 7 
than 15 minutes, a proportional difference of double was used. 8 
 9 

For the number of transfers, an acceptable limit was set at two transfers, with transit trips 10 
requiring more not being considered a competitive alternative.  11 
 12 
3.2.2 Modeling impacts on the substitution rate 13 

Four different models are used to evaluate the correlation between various factors  and the TNC-14 
PT substitution rate. The models used include: (1) Ordinary Least Squares (OLS) regression model; (2) 15 
fractional regression; (3) spatial lag model; and (4) spatial error model.  16 

 17 
The dependent variable used in the model is the percent of total TNC trips categorized as 18 

substitution, and the analysis unit is census tracts. The independent variables fitted into the model include: 19 
(1) Soceio-demographics: percentage of population identifying as white, percentage aged over 65, 20 

percentage aged 25-34, percentage college-educated, percentage of households without a private 21 
vehicle, percentage of foreign-born population, median household income; 22 

(2) TNC network: number of TNC trips per km2, TNC average travel time, TNC average fare, percentage 23 
of TNC trips during peak hours; 24 

(3) PT network: percentage of commuting by transit, number of PT stops per km2, whether there is a rail 25 
stop present; 26 

(4) Built environment: population density, crime rate, walkability index, number of POIs. 27 
 28 
The explanatory variables are examined for potential collinearity (correlation matrix provided in 29 

Figure F.1 of Supplementary Materials), and median household income was found to strongly correlate 30 
with several other factors (including percent white, percent aged 25 to 34, percent college graduate, and 31 
percent without a vehicle). It is thus removed from the subsequent regression analysis.  32 

 33 
The OLS model is conducted as the base model. Given that the dependent variable is a 34 

continuous fraction in the range of [0,1], we further applied fractional regression, which is achieved by 35 
fitting the GLM link function to the standard binomial likelihood in R. 36 
  37 

The spatial lag model accounts for spatial autocorrelation in the observed data and is constructed 38 
as follows:   39 

𝑌 = 𝑋𝛽 + 𝜌𝑊𝑌 + 𝜀                                                                    (2) 40 
 Where 𝑌 represents the set of response variables (i.e. the TNC-PT substitution rate) for each 41 
census tract, 𝑋 represents the set of explanatory variables, 𝛽 represents the regression coefficients, 𝜀 42 
represents the error terms, 𝜌 is a spatial lag parameter that measures the strength of spatial dependence, 43 
and 𝑊 is a spatial weight matrix for each census tract relative to each other (Chi & Zhu, 2019). This 44 
model considers the values of the observed variable (𝑌) in adjacent spatial areas when predicting 45 
coefficients for a given area.  46 
 47 
 The spatial error model produces an error term which considers both spatially lagged errors and 48 
normally distributed errors, and is constructed as follows:   49 

𝑌 = 𝑋𝛽 + 𝑢; 𝑢 = 𝜌𝑊𝑢 + 𝜀                                                                 (3) 50 
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 Where 𝑢 is a set of error terms, 𝜌 is a spatial error parameter, and 𝑊 is a spatial weight matrix for 1 
each census tract (Chi & Zhu, 2019).  2 
 3 
4 Results and Discussions 4 
 5 
4.1 TNC-PT Relationship Under Regular Conditions 6 

Firstly, we examine the TNC-PT relationship under regular operating conditions (before COVID-7 
19 shutdowns), producing aggregate results shown in Table 1. It is found that potential substitution trips 8 
represent approximately 45% to 50% and potential independence trips represent around 48% to 53%. A 9 
detailed breakdown of how these percentages were calculated through the analysis process is provided in 10 
Appendix D. These results also assert that complementarity plays a minor role in the overall relationship, 11 
ranging from 1.9% to 2.2% in ordinary conditions, an estimate which is lower than findings of various 12 
earlier papers for other contexts such as King et al. (2020). While the authors acknowledge the inherent 13 
subjectivity of decisions in the First-Mile/Last-Mile analysis process, a reasonable upper bound was 14 
calculated according to the process described in Section 3.2.1.2, which estimated the complementary trip 15 
percentage to be a maximum of 3.8% to 4.2% (depending on analysis date).  16 
 17 
Table 1 Aggregate analysis results for baseline TNC-PT relationship 18 

Analysis 
Date 

Total 
Trips 

Avg Length 
(min) 

Avg 
Fare ($) 

Complementary 
(%) 

Substitution 
(%) 

Independent 
(%) 

2019-10-08 429,119 17.4 $14.09 2.02 46.59 51.39 
2019-11-19 484,938 17.5 $14.04 1.89 50.19 47.93 
2020-01-21 459,862 16.4 $14.55 2.09 47.26 50.65 
2020-01-28 440,328 15.9 $14.42 2.19 44.88 52.93 

 19 
 20 
4.1.1 Temporal Trend of TNC-PT Relationship in Regular Conditions 21 

We further examine the temporal trends of the TNC-PT relationship under regular conditions on 22 
January 28, 2020 before the COVID-19 shutdowns (Figure 3). This chart demonstrates morning and 23 
evening peak travel periods, as well as spikes in substitution rates during these times. As work-based trips 24 
account for a large proportion of trips during the peak, our results indicate that many work-based TNC 25 
trips have a viable transit alternative which individuals choose not to take – potentially due to decision-26 
making factors such as crowding on transit lines, aversion to possible delays, or a greater sensitivity to 27 
travel time.  28 
 29 
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 1 
Figure 3 Temporal trends of (a) volumes and (b) percentage for TNC trips in each category on 2 

January 28, 2020   3 
 4 
4.1.2 Spatial Distribution of TNC-PT Relationship in Regular Conditions 5 

We adopt spatial analysis to identify patterns in the TNC-PT relationship. First, distributions of 6 
complementarity, independence, and substitution rates by origin census tract3 are examined, by 7 
calculating the proportion of each trip category relative to the total number of TNC trips taken within that 8 
tract (Figure 4). Independent trips are prevalent in areas further away from major rail transit. Substitution 9 
trips, on the other hand, are most concentrated downtown, and along rail lines. Complementary trips are 10 
seen primarily in neighborhoods to the north and northwest of downtown which are served effectively by 11 
rail.   12 

 13 
Figure 4 Spatial distribution of complementarity, independence, and substitution rates for ordinary 14 
operation on January 28, 2020 15 
 16 

 
3 More granular analysis is possible with the current data and could be more effective if a smaller area was 
examined. 
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The spatial distribution is also examined by identifying clusters of high and low rate for each type 1 
of relationship using a local Getis Ord (𝐺:∗) statistic, because the relationship is highly spatially 2 
autocorrelated4. Tracts found to be part of a hot-spot (dark color) or cold-spot (light color) at 90% 3 
confidence are illustrated in Figure 5 for each type of relationship. This shows that the downtown area 4 
and some other regions along rail lines experience higher rates of substitution. Additionally, areas which 5 
are not well served by rapid transit (particularly on the south side of Chicago) experience consistently low 6 
substitution rates, indicating a lack of viable transit alternatives to TNC trips which are taken. This differs 7 
from the conclusions reached by Barajas & Brown (2021), who claimed that TNC services do not 8 
correlate with use in transit deserts based on observations of TNC ridership by census tract. This different 9 
conclusion may come from the stricter criteria used to differentiate the nature (rather than strictly volume) 10 
of TNC trips utilized in this study, which identify TNC trips as independent from transit if the transit 11 
alternatives require long walking times to access transit or experience very long transit travel times. 12 
Complementarity hotspots are located almost entirely around a few major rail stations, potentially 13 
indicating areas which are popular first/last mile destinations for linked TNC-PT trips.  14 

 15 
In Figure 5, it is also visually clear that many areas which are ‘cold spots’ for substitution are also 16 

‘hot spots’ for independence, and vice versa. This is largely the case because complementary trips make 17 
up a very small proportion of the total (less than 5%), and thus most trips fall in one of the other two 18 
categories. Intuitively, while the results assert that a majority of TNC trips do not connect to transit 19 
services, the two modes maintain service areas and service qualities which overlap in some places 20 
(particularly regions with high concentrations of substitution), but differ considerably in other areas 21 
(likely those with greater rates of independence).  22 
 23 
 24 

 25 
Figure 5 Identified clusters of high (dark color) or low (light color) rates using local Getis Ord (Gi*) 26 
statistic for (a) complementary, (b) independent, and (c) substitution trips  27 
 28 
4.2 Factors Influencing the TNC-PT Relationship 29 

 
4 The Moran’s I statistic value of substitution rate is 0.258 (variance of 0.00038). 
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To further evaluate the factors that are associated with the TNC-PT relationship under regular 1 
conditions (January 28, 2020), four alternative regression models are used as described in Section 3.2.2. 2 
Table F.1 (in Appendix F of Supplementary Materials) provides the descriptive statistics of the variables.  3 
 4 

The initial level of spatial autocorrelation of the dependent variable (substitution rate by trip 5 
origin census tract) is tested, yielding a Moran’s I statistic of 0.313 (with variance of 0.00055). This 6 
indicates that the initial results are highly autocorrelated, which must be accounted for in subsequent 7 
regression models. While the OLS and fractional regression are inadequate in capturing these spatial 8 
effects, both the spatial lag and spatial error models successfully do so. As the spatial lag model produced 9 
the minimum AIC, maximum log-likelihood, and greater Lagrange Multiplier value, it better captures the 10 
intended effects and was used for interpretation.  11 
 12 

As shown in Table 2, the percentage of residents aged over 65 has significant and negative 13 
correlation with the TNC-PT substitution rate, indicating that in census tracts with more elderly 14 
populations, a lower percentage of TNC trips tend to substitute PT. Areas with a greater percentage of 15 
white residents, on the other hand, correlate with a greater likelihood to substitute transit with TNC trips. 16 
These results are all supported by previous studies such as those by Rayle et al. (2016) and Young & 17 
Farber (2019). These factors expand upon the spatial analysis by providing insight into demographic 18 
features, thus helping to better understand the individual decision to take, or not to take, a TNC trip in 19 
place of a transit trip. 20 

  21 
Areas with high crime rates also substitute transit for TNC trips at increased rates. This indicates 22 

safety as a relevant factor for transit system operators, whether that be neighborhood safety or perceived 23 
safety on transit. This result was highly significant across all models, and corroborates findings by the 24 
Chicago Metropolitan Agency for Planning (2019) and San Francisco County Transportation Authority 25 
(2017). These findings build upon previous research by Henao (2017), which identified that lower-26 
income, potentially higher-crime areas have low TNC ridership relative to other portions of cities. This 27 
study similarly finds overall ridership to be low in high-crime areas, but the findings which correlate 28 
crime rate with TNC substitution rate provide further insight into the nature of ridership which does exist. 29 
Specifically, the results may reflect a subset of safety-concerned individuals who choose TNC travel 30 
(despite having a public transit option) due to concerns around personal safety. This influence of 31 
neighborhood crime rates on TNC substitution percentage indicates a potential for transit operators to 32 
regain TNC riders if they are successfully able to improve real or perceived safety levels on the transit 33 
system.  34 

 35 
Several characteristics of the TNC network are correlated with the substitution percentage. Areas 36 

with a greater TNC fare are less likely to substitute TNCs for transit, perhaps indicating a sensitivity of 37 
riders to the price difference between services (as transit prices remain constant across the CTA network). 38 
Areas with a greater share of peak-period TNC trips are also correlated with greater substitution rates, 39 
further indicating that work-based TNC trips may disproportionately substitute for public transit. 40 
Additionally, the level of PT network availability also correlated with increased substitution percentage, 41 
possibly because areas which are well-served by transit are more likely to have a competitive transit 42 
alternative to TNC trips.  43 
   44 



 

16 

Table 2 Results of regression on rate of substitution by census tract for baseline analysis period 1 
(January 28, 2020)  2 

 3 

4.3 COVID-19 Impact on the TNC-PT Relationship 4 
The aggregate TNC-PT relationship is shown for selected analysis dates through COVID-19 in 5 

Table 2. Unsurprisingly, the overall volume of trips reduces dramatically from pre-COVID levels, down 6 
92% on March 31st, 2020, but recovering somewhat through summer 2020. The spatial distribution of trip 7 
volume decreases (shown in Appendix E) is concentrated around Chicago’s central business district (the 8 
‘loop’), and generally affluent neighborhoods immediately north and northwest of downtown (Dwyer, et 9 
al., 2017). This may indicate a decrease in work-based trips, reflecting office jobs which are most likely 10 
to be conducted remotely during COVID-19 (Brynjolfsson, et al., 2020). The average length of trips taken 11 
also decreases by around 20% from January 28, 2020 to March 31, 2020, potentially attributable to an 12 
increased percentage of shorter non-work trips. This length decrease was not, however, accompanied by a 13 
proportional decrease in fares. Customers thus paid a greater per-minute price for TNC trips, potentially 14 
due to a decrease in supply of drivers willing to complete trips.  15 
 16 
Table 2 Estimated aggregate TNC-PT relationship for selected dates through COVID-19 17 

Analysis 
Date 

Total 
Trips 

Avg Length 
(min) 

Avg 
Fare ($) 

Complementary 
(%) 

Substitution 
(%) 

Independent 
(%) 

2019-10-08 429,119 17.4 $14.09 2.02 46.59 51.39 
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2020-01-28 440,328 15.9 $14.42 2.19 44.88 52.93 
2020-03-24 86,586 13.1 $13.82 2.89 12.67 84.44 
2020-03-31 37,852 12.8 $13.54 2.93 13.51 83.56 
2020-05-12 97,197 14.0 $14.06 2.82 12.10 85.09 
2020-06-02 109,006 16.2 $15.32 3.19 14.51 82.30 

 1 
 Changes of each type of TNC-PT relationship are also clear. The percent of potential substitution 2 
trips decreases dramatically, by close to 70% as COVID-19 shutdowns begin. This loss of substitution 3 
trips is absorbed entirely by the potential independent trips, indicating that a greater percent of trips took 4 
place in areas not sufficiently served by transit.  5 
 6 
4.3.1 Temporal Trend of TNC-PT Relationship after COVID-19 Shutdown 7 

We further examine the temporal pattern of TNC-PT relationship after the COVID-19 shutdowns 8 
(Figure 6). Compared with Figure 3, after COVID-19 shutdowns, the number of substitution trips is 9 
consistent throughout the day, somewhat proportional to the overall number of trips. This decreased 10 
fluctuation of substitution rates could indicate an increased uniformity of trip purpose throughout the day 11 
(e.g. grocery shopping), rather than peaks attributable to commuting trips.  12 
 13 

 14 
Figure 6 Temporal (a) trip volumes and (b) substitution rates for TNC trips on March 31, 2020   15 

 16 
4.3.2 Impacts of COVID-19 on TNC-PT Substitution Rate 17 

The change in substitution rates by census tract resulting from the COVID-19 pandemic is also 18 
studied for spatial significance. First, the absolute difference in substitution rate is calculated for each 19 
census tract, as the rate on January 28 minus the rate on March 31 (Figure 7a). These values have a 20 
Moran’s I statistic of 0.197 (variance 0.00038), which indicates significant spatial autocorrelation. 21 
Hotspots are once again located using a local Getis Ord (𝐺:∗) statistic, and statistically significant tracts at 22 
a 90% confidence level are shown in Figure 7b. This identifies a significant cluster of high substitution 23 
rate drop in the downtown area, as well as a cluster of low substitution rate drop on the south side – 24 
particularly in areas which previously had low substitution rates (likely due to a lack of rapid transit 25 
access), and thus were unlikely to drop much further.  26 

 27 
Therefore, the COVID-19 pandemic has dramatically altered the landscape of Chicago’s TNC-PT 28 

relationship. The changes in the spatial and temporal patterns in substitutive TNC trips indicate that many 29 
conventional work-based trips in high-income areas are no longer being conducted, which substituted for 30 
transit services before COVID-19.  31 
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 1 

 2 
Figure 7 Drop in substitution rate by (a) census tract, and (b) clusters found with Gi

* statistic, from 3 
January 28, 2020 to March 31, 2020 4 
 5 
4.3.3 Factors influencing the TNC-PT relationship during the COVID-19 shutdown 6 

To evaluate the factors that are associated with the TNC-PT relationship following the COVID-7 
19 shutdown, the regression models described in Section 3.2.2. are performed for March 31, 2020 8 
(following COVID-19 shutdowns). The model dependent variable is the percent of substitution trips, and 9 
the analysis unit is census tracts. Table F.1 (in Appendix F of Supplementary Materials) provides the 10 
descriptive statistics of the variables. As shown in Table 3, in comparison with the model conducted for 11 
ordinary operating conditions (Section 4.2), the results shift somewhat though some correlated factors 12 
remain consistent. While TNC fares, transit stop density, and crime rates remain highly correlated with 13 
the tendency to substitute transit trips for TNCs, several additional factors become significant following 14 
COVID-19. Population density, number of points of interest, immigration status, and college education 15 
are all significant factors in the post-shutdown model. This seems to indicate a tendency for downtown 16 
areas (where many of these new factors are prominent) to retain higher rates of substitution following the 17 
pandemic, while less-dense areas seemed to decrease both TNC use and the tendency for these TNC trips 18 
to substitute transit – perhaps due to fewer work-commute trips. 19 
 20 
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Table 3 Results of regression on substitution rate by census tract following COVID-19 shutdowns 1 
(March 31, 2020) 2 

 3 
 4 
  5 
5 CONCLUSIONS 6 
 In conclusion, to address the methodolical limitations of earlier studies and provide granular 7 
insight into the nature of the TNC-PT relationship, this paper expanded existing methods for analyzing 8 
the TNC-PT relationship and applied them to both normal operating conditions and the early stages of 9 
COVID-19 in Chicago.  10 
 11 
 Before the COVID-19 pandemic, around 45% to 50% of TNC trips could potentially substitute 12 
for PT, and around 48% to 53% of TNC trips were potentially independent from PT. This result is 13 
comparable with previous findings from Young et al. (2020), which estimated the proportion of TNC trips 14 
with a competitive transit alternative to be approximately 31% in Toronto. The results differ somewhat, 15 
likely due to the varying methodological approaches and case study contexts. Similar to Young et al., this 16 
study finds that a greater proportion of TNC trips compete with transit during peak travel periods, and in 17 
areas near the downtown.   18 
 19 

TNC trips that potentially complement transit make up a very small percentage of the total, 20 
showing that generally TNC services are unsuccessful in providing a first or last mile connection to 21 
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transit. The factors associated with high TNC-PT substitution rate also provide additional insight, 1 
including the tendency for older populations not to use TNC trips, as well as greater substitution rates in 2 
locations with high crime levels, a greater rate of peak-period TNC use, a higher percentage of white 3 
population, and greater transit network availability. The application of the framework to the COVID-19 4 
pandemic indicates a significant change in how TNCs interact with transit services during this period, 5 
particularly through increased levels of independence and decreased substitution, likely stemming from a 6 
significant reduction in the relative percentage of work-based trips which typically reflected a spike in 7 
substitution rates during peak hours.  8 
 9 
 This study provides several implications to policymakers. First, the analysis identified a surge in 10 
TNC trips taken for work during peak periods under ordinary conditions, which could feasibly be 11 
completed by transit. Policymakers may wish to structure regulation and incentives to encourage shifts 12 
away from TNC services during these periods, to help alleviate traffic congestion during the most 13 
constrained periods of ordinary travel. Furthermore, an identified tendency to replace transit with TNC in 14 
high-crime areas underscores the need for enhanced public transit safety measures in these areas, to 15 
ensure that potential riders are not deterred from the PT system.  16 
 17 
 It is also important to acknowledge the limitations of this study, particularly regarding judgement-18 
based decisions made for analysis thresholds. For example, the categorization of complementary TNC 19 
trips were estimated by the likelihood of a rider taking the TNC trip to access transit stops, rather than by 20 
the complete information of a rider’s entire trip chain or travel purpose. Other decisions, such as selected 21 
thresholds for buffer analysis or travel time comparison, were made considering reference literature and 22 
sensitivity analysis. We acknowledge the limitations and subjectivity in this process, though decisions had 23 
to be made to operationalize the methods developed. When applied to other study areas, these thresholds 24 
need to be adjusted based on the local context and data availability. Furthermore, the study only analyzes 25 
the TNC-PT relationship on several sample dates. Since we have carefully selected the sample dates to 26 
avoid the variations in seasons, weather, and days of the week, our results are still representative of the 27 
mobility landscape in the period we are interested in. The geographic scope of the case study is also 28 
restricted to the City of Chicago, and transit service analyzed includes only the CTA (although both Pace 29 
Suburban Bus and Metra rail operate in the Chicago area). This decision was made as the Chicago TNC 30 
data sharing agreement (City of Chicago, 2017) only mandates that trips taken within the City of Chicago 31 
be reported, and Pace and Metra services operate almost entirely outside of the city boundary. However, 32 
given greater data availability, the study may be expanded in the future to analyze the TNC-PT 33 
relationship more holistically across the greater Chicago area.    34 
 35 

Future research may expand upon this initial study in several different ways. By integrating 36 
additional data sources, transit service quality measures could be expanded to capture the impacts of 37 
passenger crowding. Furthermore, the method may be used to study the development of the TNC-PT 38 
relationship during the recovery phase of the COVID-19 pandemic, and the post-pandemic ‘normal’. 39 
Transit ridership records (with APC data) and surveys may also be applied to better understand individual 40 
decisions to use TNCs in place of public transit, and how transit ridership has changed in response to the 41 
introduction of TNC services. Finally, the application of the research may be broadened to assess 42 
evolution of the TNC-PT relationship in response to other scenarios, such as TNC tolling and other policy 43 
interventions. 44 
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