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Fairness-enhancing deep learning
for ride-hailing demand prediction

Yunhan Zheng, Qingyi Wang, Dingyi Zhuang, Shenhao Wang*, and Jinhua Zhao

Abstract—Short-term demand forecasting for on-demand ride-
hailing services is a fundamental issue in intelligent transporta-
tion systems. However, previous research predominantly focused
on improving prediction accuracy, ignoring fairness issues such as
systematic underestimations of travel demand in disadvantaged
neighborhoods. This study investigates how to measure, evaluate,
and enhance prediction fairness between disadvantaged and
privileged communities in spatial-temporal demand forecasting
of ride-hailing services. We developed a socially-aware neural
network (SA-Net) that integrates socio-demographics and rid-
ership information for fair demand prediction, and introduced
a bias-mitigation regularization to reduce the prediction error
gap between black and non-black, and low-income and high-
income communities. The experimental results, using Chicago
Transportation Network Company (TNC) data, demonstrate that
our de-biasing SA-Net model outperforms other models in both
prediction accuracy and fairness. Notably, the SA-Net exhibits a
significant improvement in prediction accuracy, reducing 2.3%
in Mean Absolute Error (MAE) compared to state-of-the-art
models. When coupled with the bias-mitigation regularization,
the de-biasing SA-Net effectively bridges the mean percentage
prediction error (MPE) gap between the disadvantaged and
privileged groups, and protects the disadvantaged regions against
systematic underestimation of TNC demand. Specifically, our
approach reduces the MPE gap between black and non-black
communities by 67% without compromising overall prediction
accuracy.

Index Terms—Spatial-temporal travel demand prediction, al-
gorithmic fairness, demand forecasting, ride-hailing service

I. INTRODUCTION

IN recent years, on-demand ride-hailing services have
grown rapidly. Transportation network companies (TNCs)

such as Uber and Lyft provide the ride-hailing services
by connecting passengers with drivers based on real-time
information [1, 2]. Reliable and accurate short-term travel
demand forecasting is a promising tool to balance vehicle
supply and demand with low cost and high quality of service
[3, 4, 5]. Researchers have developed a series of data-driven
approaches to predict travel demand in real-time, including
time series analysis methods [6, 7], machine learning methods
[8, 9] and deep learning models [3, 10, 11]. These approaches
typically divide the study region into small areas, use the past
travel requests in a time interval as the historical demand,
and then seek to enhance the prediction accuracy of the
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future travel demand as a function of the historical demand
(assuming certain spatial and temporal correlations among
them) and exogenous features such as the weather and holiday.

However, a narrow focus on prediction accuracy ignores
the crucial social consequences underlying the prediction
tasks, such as unfairness in travel demand forecasting. For
instance, since the transport operators depend on the predicted
passenger demand to dispatch vehicles, if travel demand
in disadvantaged neighborhoods is systematically under-
predicted, the resulting service provision may be inadequate.
The existing literature has the following two limitations:
first, most previous studies evaluated the performance of the
demand predictions by the average prediction accuracy across
the whole study region, while research into the disparity
of predictive performance between the disadvantaged and
privileged areas is very scarce. This raises an equity concern
because if the ride-hailing demand for the disadvantaged
neighborhoods is systematically underestimated, the vehicles
allocated to these neighborhoods may not be enough to serve
the actual demand. Second, most previous models did not
consider the socioeconomic and demographic information
of the areas when making travel demand predictions. Areas
with different socioeconomic and demographic makeup could
have very different spatial-temporal dependencies. Failure
to account for the heterogeneity of these spatial-temporal
dependencies can lead to biased model results.

To overcome these limitations, this paper presents a novel
approach that aims to enhance prediction fairness without
compromising high prediction accuracy in zone-level ride-
hailing demand forecasts. This strategy is comprised of a
new deep learning architecture, named the socially aware
network (SA-Net), and a bias-mitigation regularization
method, to achieve fairness-aware travel demand predictions.
While previous research typically adopted spatially-invariant
convolutional kernels to capture spatial dependencies, this
new network incorporates a novel Socially-Aware Convolution
(SAC) module that adapts the standard invariant kernel at
each area of the study region based on the socio-demographic
makeup of that area, which is highly flexible and thus
can better capture the spatial-temporal dependencies across
different locations. The bias-mitigation regularization method
modifies the traditional objective functions in deep learning
travel demand predictions by adding a fairness regularization
term, thus facilitating fair travel demand predictions.

The main contributions of this paper can be summarised as
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follows:
● We propose a new model (SA-Net) that adopts location-

specific modification to the standard spatially-invariant
convolutional filters. The proposed network can flexibly
capture the spatial heterogeneity by incorporating the
local socioeconomic and demographic information into
the prediction process.

● We propose a fairness metric, the mean percentage
error gap (MPE Gap), which measures the gap of mean
percentage prediction error between the disadvantaged
and privileged groups. A positive MPE indicates that the
model has underestimated the demand, whereas a nega-
tive MPE indicates an overestimation of the demand.

● We develop a bias-mitigation regularization method that
allows the network to learn fair predictions by bringing
down the MPE Gap between the disadvantaged and
privileged groups.

● Experiments on Chicago TNC data reveal the risk of gen-
erating spatially unfair demand prediction with the state-
of-the-art spatial-temporal deep learning predictions, and
show that our proposed new method can not only reduce
the fairness gap between the disadvantaged and priv-
ileged groups, but also increase the overall prediction
accuracy.

The rest of the paper is organized as follows. Section II reviews
the existing literature on ride-hailing demand prediction and
fairness in machine learning. Section III defines the research
problem. Section IV describes the model architecture of the
proposed SA-Net, the fairness evaluation metrics, as well as
the bias mitigation regularization method. Section V shows
the experiment results, which compare the prediction accuracy
and fairness between the proposed de-biasing SA-Net and the
benchmark models on the Chicago TNC dataset. Section VIII
concludes the paper.

II. LITERATURE REVIEW

A. Spatial-temporal travel demand forecasting

Spatial-temporal travel demand forecasting has been a
fundamental issue in intelligent transportation systems
[12, 10, 13]. It involves predicting the demand for travel
in specific locations over time. Early research in this field
focused on traditional time-series regression models such as
ARIMA [6] and Kalman Filter Lippi et al. [14]. These models
were effective in capturing temporal patterns and variations
in travel demand.

In recent years, there has been a shift towards machine
learning-based approaches due to the availability of large-
scale data and increased computing power [15, 16, 17, 18].
Machine learning models, such as support vector regression
[8] and regression trees [9], have been employed for travel
demand forecasting. More recently, deep learning methods
have gained significant popularity due to their capabilities of
approximating human’s decision functions and their capability
of capturing complex spatial-temporal correlations in the data
[19, 20].

Deep learning architectures, including recurrent neural net-
works (RNNs) [21] and long short-term memory (LSTM)
[22, 23], have been widely used to capture sequential de-
pendencies and long-range temporal dependencies in travel
demand data. These models can effectively handle the tem-
poral dynamics of travel demand. Additionally, convolutional
neural networks (CNNs) have been adopted to capture spatial
correlations in grid-based travel demand predictions. By using
localized kernels, CNNs can identify local and global spatial
patterns in the data [24]. Furthermore, graph neural networks
(GCNs) have been explored to capture non-Euclidean spatial
correlations in network-structured data, such as station-based
or traffic network scenarios [25, 26, 27, 28]. More recently,
GCNs have been applied to region-based scenarios, such as
urban areas [29].

B. Ride-hailing demand prediction
Ride-hailing demand prediction is a specific application
of spatial-temporal travel demand forecasting, focusing on
predicting the demand for ride-hailing services in particular.
This area has garnered significant attention in recent years,
given the rise of ride-hailing platforms. Researchers have
developed various techniques to accurately forecast ride-
hailing demand.

Early ride-hailing demand prediction models utilized
traditional time-series regression models, such as ARIMA
and its variants [30, 31]. However, with the advancements
in machine learning, researchers have increasingly turned to
more sophisticated approaches. Deep learning methods, in
particular, have gained prominence in this domain [4].

Several studies have proposed deep learning architectures
specifically designed for ride-hailing demand prediction. For
instance, Ke et al. [3] developed a Conv-LSTM network that
combines CNNs and LSTMs to capture spatial, temporal,
and exogenous dependencies simultaneously. Huang et al.
[32] proposed a GAN framework-based dynamic multi-graph
convolutional network tailored for origin-destination-based
ride-hailing demand prediction. Rahman and Rifaat [33]
employed spatio-temporal deep learning techniques to
forecast demand and supply-demand gaps in ride-hailing
systems, incorporating anonymized spatial adjacency
information. Chen et al. [34] developed a multivariate deep
learning convolutional neural network that incorporates socio-
demographic information to forecast ride-hailing demand.

Although the abovementioned methods have made remarkable
progress on improving the prediction accuracy, most of them
do not consider fairness when making predictions. Fairness
essentially involves the evaluation of a predictive model
regarding its social consequences, so without incorporating
any socio-demographic information, the predictive models are
hardly aware of the social consequences. Motivated by this
research gap, this paper aims to evaluate and improve fairness
in TNC travel demand forecasting by incorporating socio-
demographics, proposing fairness metrics, and developing an
fairness-enhancing prediction method.
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C. Fairness in machine learning

There exists extensive machine learning literature showing
that a model can act discriminatorily on one population
in a variety of settings such as criminal risk assessment
[35, 36], clinical care [37, 38] and credit risk evaluation
[39, 40]. These studies made significant contributions in
terms of formalizing fairness in machine learning [41, 42],
designing fairness-enhancing algorithms [43, 44, 45] and
solving fairness concerns in real-world industries [46, 47].

However, literature that investigated the algorithmic fairness
issue in transportation research was very scarce. In the
domain of travel behavior modeling, Zheng et al. [48]
demonstrated prediction disparities regarding race, income,
medical condition and region in travel behavior modeling
using the 2017 National Household Travel Survey (NHTS)
and the 2018-2019 My Daily Travel Survey in Chicago. The
authors adopted an absolute correlation regularization method
to mitigate the prediction biases. In the spatial-temporal travel
demand modeling setting, to the best of our knowledge,
very few studies tried to tackle the fairness issue. Yan and
Howe [49] modified the loss function in deep learning to
reduce the gap of per capita predicted bikeshare demand
between the disadvantaged and advantaged regions. The
modification is based on the fairness assumption that the per
capita predicted demand should be the same across regions.
Yan and Howe [50] leveraged adversarial learning to mitigate
the gap in prediction errors of bikeshare demand between the
advantaged and disadvantaged groups.

Although much progress has been made in addressing algorith-
mic bias, there are still several research limitations that need
to be addressed. First, one critical source of bias is feature
selection, where selected variables fail to capture sufficient
details that affect different outcomes [51, 52]. To combat this,
it is crucial to develop strategies to integrate sociodemographic
information into the modeling process. Another limitation
is that previous research on fairness has measured it based
on the absolute value of demand, which can lead to errors
in disadvantaged groups being considered insignificant. To
address this, we propose a new measure of fairness based on
the relative value of demand. This measure compares errors
with the typical demand of the region, which is based on
the concept of algorithmic fairness known as “equality of
odds”[53]. This principle requires that all individuals who
have a TNC demand should have an equal chance of having
it reflected in the prediction, regardless of their social and
demographic characteristics. By using this new measurement
of fairness, we can better understand and mitigate algorithmic
bias in ride-sharing platforms. To address these limitations, we
build upon the state-of-the-art spatial-temporal travel demand
models, and propose a novel method for fair predictions of
TNC travel demand.

III. PROBLEM DESCRIPTION AND PRELIMINARIES

The goal of this study is to predict the zone-level short-
term TNC demand in the study area. Based on the method

proposed by Ke et al. [3] and Guo and Zhang [10], the study
area is partitioned into I × J grids with each grid referring
to a zone. The temporal dimension considered is 1 hour. It
is assumed that future TNC demand is correlated with the
TNC demand in the past. It is also influenced by seasonality
(time-of-day, day-of-week, etc.), and exogenous variables such
as weather conditions and the level of transit service. The
variables examined in this study are defined as follows:

1) TNC demand
The TNC demand at the tth time slot across the whole
region is denoted as Dt ∈ RI∗J , which is defined as
the number of TNC orders happened during that time
interval. The TNC demand in grid (i, j) is then denoted
as (Dt)i, j

2) Time-of-day, day-of-week, holiday
By examining the Chicago traffic index data1, we
categorize 24h in each day into three periods: the peak
hours (7am - 9am and 3pm - 7pm in workdays), the
mid-peak hours (9am -3pm in workdays and 11am -
7pm in weekends), the off-peak hours (7pm - 7am in
workdays and 7pm - 11am in weekends). We use todt
to indicate this time-of-day variable, which takes values
0, 1, 2 if t belongs to the off-peak hours, the mid-peak
hours and the peak hours, respectively. dowt is the day-
of-week variable, which takes value 1 if t is among
the weekdays and 0 if t is among the weekends. The
dummy variable ht is used to indicate whether t is in a
holiday or not.

3) Weather
We consider precipitation as the weather variable,
which is denoted as pt . The precipitation data is
obtained from the website of National Centers for
Environmental Information [54].

4) Socio-demographic data
The study examines various socio-demographic vari-
ables, including total population, population per
squared kilometers, employment count, percentage of
African-American population, percentage of female
population, percentage of spanish speakers, percentage
of foreign-born population, median household income,
percentage of population with 2019 household income
lower than $25,000, percentage of college graduates,
percentage of population with age between 25 and 34,
percentage of population with age over 65, percentage
of transit commuters and percentage of population
with no household vehicles. Employment data at the
census tract level is collected from LEHD employment
statistics [55]. The remaining census tract level socio-
demographic data derived from the 2019 American
Community Survey (ACS) 5-year estimates data. We
use Zp to represent the pth socio-demographic vari-
able and use P to denote the total number of socio-
demographic variables.

5) Transit service level
To account for the supply-demand interaction, transit
service level represented by the frequency of bus and

1https://www.tomtom.com/en gb/traffic-index/chicago-traffic/
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rail serving each grid cell is used. Frequency of transit
service is obtained from the General Transit Feed Spec-
ification (GTFS) [56], which details the transit schedule
service each stop. For any grid cell (i, j), we count the
total number of bus and rail visits to all stops located
in the grid cell during time period t, and denote them
as Bt and Rt respectively. The symbol Gt represents the
transit service level at a specific time t. Gt is equal to
the concatenation of Bt and Rt , denoted as Gt = [Bt ,Rt].

The target of this study is to predict the TNC demand at time
t (Dt ), given the historical TNC demand, the transit service
supply, the time series features and the socio-demographic
variables: {Ds,Gs, ps∣s = 0, ...,t −1}, {tods,dows,hs∣s = 0, ...,t}
and {Zp∣p = 1, ...,P}. This research focuses on two objectives:
prediction accuracy and fairness. Prediction accuracy refers to
the goal of minimizing the overall prediction errors. Prediction
fairness refers to the goal of reducing the gap in mean
percentage errors between the disadvantaged and privileged
groups.

IV. METHODOLOGY

This research designs a novel SA-Net to predict the short-
term TNC demand with enhanced fairness. We first introduce
the Socially-Aware Convolution (SAC), a base module that is
repeatedly used in SA-Net, and describe how SAC is adapted
from the standard CNN. We will then introduce SAC-LSTM
which combines SAC and LSTM. After that, we will explain
the complete model architecture used in this study.

A. CNN and SAC

In this section, we will start with a formulation of the
standard convolution neural network, and then extend it to
the Socially-Aware Convolution (SAC). The concept of SAC
is illustrated in Figure 1. We start from a standard convolution,
which can be written as:

Y [m, p,q] = σ(∑
i, j,n

W [m,n, i, j]∗X[n, p+ î,q+ ĵ]), (1)

where Y ∈ RO×S×S denotes the output tensor, X ∈ RI×S×S is
the input tensor, W ∈ RO×I×S×S denotes the filter weight. O,
I, S and V represent the output channel size, input channel
size, image size, and kernel size. [p,q] denotes the pixel
coordinates. m and n are the indices for the output and
input channels. î = i−[V /2], ĵ = j−[V /2]. σ is the activation
function. From Equation 1, we can see that the filter weight
W [m,n, i, j] is invariant to image locations. Therefore, the
standard convolution is content-agnostic. To account for the
local information, we use the Socially-Aware Convolution
(SAC) which was built upon the work by Su et al. [57]. A
SAC modifies the spatially invariant filter W with an adapting
kernel K, which can be expressed as follows:

Y [m, p,q] =σ(∑
i, j,n

K(F[p+ î,q+ ĵ],F[p,q])∗W [m,n, i, j]

∗X[n, p+ î,q+ ĵ])
(2)

where F ∈ RS×S is the feature map, which will be explained
in the following subsection. K represents the Gaussian kernel

function: K( f1, f2) = exp(− 1
2( f1 − f2)

T ( f1 − f2)). The kernel
values are higher for regions with similar feature values. The
SAC operation represented by Equation 3 adapts the standard
convolution filter W at each pixel by multiplying the spatially-
invariant filter W with a spatially-varying adapting filter K.
The feature map F picks up local features that reflect the
relationships between different regions on the map.

B. Feature map construction
We construct the feature map F as a linear combination of

various socio-demographic variables, which is shown in Figure
2. The feature value fi j is calculated as fi j =∑

P
p wp∗Zp

i j where
Zp

i j represents the value of the socio-demographic variable p
(e.g. population density, race, income etc.) for region [i, j].
To ensure a fair comparison and mitigate any potential bias
stemming from variations in measurement scales across vari-
ables, each variable p has been standardized using z-scores.
By applying a Gaussian kernel function to the feature values
of the center pixel and its surrounding pixels, for each pixel
value prediction, we emphasize the neighboring pixels that
are more similar to this specific pixel in terms of the socio-
demographic features. The underlying assumption is that the
regions that have similar socio-demographic characteristics
with their neighborhoods should have similar level of TNC
demand with their neighborhoods as well.

C. LSTM and SAC-LSTM
We use LSTM, a special kind of Recurrent Neural Netowrk

(RNN), to process the temporal information. LSTM is
designed to avoid the long-term memory problem. The model
first passes a sequence of input vectors to the memory cell
tensors through the input gate, and then drops the redundant
information through the forgot gate, and the cell state will
be updated accordingly. Finally, after several iterations, the
output gate will output a hidden sequence [58].

When dealing with the travel demand forecasting problem
with spatial-temporal data, Ke et al. [3] proposed using the
Conv-LSTM, which is a network that combines CNN and
LSTM, to capture the spatial dependencies. Unlike LSTM,
Conv-LSTM converts all the inputs, memory cell values,
hidden states and various gates from 2D matrices to 3D
tensors. Besides, Conv-LSTM replaces the Handamard product
with the convolutional operator, which is used to explore
spatially local correlations. However, Conv-LSTM utilizes the
standard convolutional filters which are replicated across the
tensors with shared weights, thus failing to account for the
heterogeneity of spatial correlations. To address this drawback
of standard convolutions, we modify the Conv-LSTM by
replacing the standard convoluations with the SAC, and name
the new network SAC-LSTM. The formulation of SAC-LSTM
is as follows:

It = σ(Wxi*Xt +Whi*Ht−1+Wci ○Ct−1+bi)

Ft = σ(Wx f *Xt +Wh f *Ht−1+Wc f ○Ct−1+b f )

Ct = Ft ○Ct−1+It ○ tanh(WxcXt +WhcHt−1+bc)

Ot = σ(WxoXt +WhoHt−1+Wco ○Ct +bo)

Ht =Ot ○ tanh(Ct)

(3)
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FIGURE 1 : Socially-Aware Convolution [57]

FIGURE 2 : Feature map (F) construction. Zp
i j represents the value of the socio-demographic variable Zp for pixel [i,j]

where the weight matrices Wx f ,Wh f ,Wxc,Whc,Wxo,Who denote
the SAC weights, which are represented by W’ in Figure 1.
“*” stands for the convolutional operator. It , Ft , Ct , Ot , Ht
are improved input gate, forgot gate, cell state, output gate and
hidden state that embeds the spatial dependencies. ○ denotes
Hadamard product (i.e. element-wise product). σ and tanh are
nonlinear activation functions:

σ(x) =
1

1+e−x ; tanh(x) =
ex−e−x

ex+e−x
(4)

D. Model description

In this section, we propose a novel socially aware net-
work (SA-Net) to forecast the short-term TNC demand. The
architecture of the network is illustrated in Figure 3, which
is comprised of two parts: the part on the right captures the
spatial-temporal variables (i.e. TNC demand) using a stack of
SAC-LSTM layers, and the part on the left processes the non-
spatial temporal variables using a stack of LSTM layers.

1) Structure for spatial-temporal variables: We use a series
of stacked SAC-LSTM layers to capture the spatial depen-
dencies and temporal correlations for the spatial-temporal
variable, which is the TNC demand data in our case. Dt is
used to denote the TNC demand for time slot t. Let C denote a

SAC-LSTM cell: C ∶ Rd∗M∗N∗I → Rd∗M∗N∗O, where d denotes
the look-back time window, which refers to the number of
previous hours taken as predictors for the TNC demand in each
time slot. M and N are the dimensions of rows and columns,
I and O represent the number of channels for the input and
output feature vectors. L denotes the number of stacked SAC-
LSTM layers. The formulation of the model architecture that
processes the TNC demand data is written as:

(Ut−d ,Ut−d+1, ...,Ut−1) = CL...C1(Dt−d ,Dt−d+1, ...,Dt−1)

X̂ u
t =Wux*Ut−1+bu

(5)

where Ut−k, k = 1,2, ...,d represent the output tensors at the
last layer of the stacked SAC-LSTM layers. Wux represents
the convolutional operation with the SAC kernel, which is
applied to further capture the spatial dependency at the final
layer, and also to reduce the number of output channel to 1.

In a similar manner, we employ a series of stacked SAC-
LSTM layers to model the transit service data. Let Gt denote
the level of transit service at time t. Gt is derived from the
concatenation of Bt and Rt : Gt = [Bt ,Rt], where Bt and Rt
represent the number of bus and rail visits at time t. The
model architecture that processes the transit service data can
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FIGURE 3 : The structure of SA-Net

be expressed as follows:

(Qt−d ,Qt−d+1, ...,Qt−1) = CL...C1(Gt−d ,Gt−d+1, ...,Gt−1)

X̂
q
t =Wqx*Qt−1+bq

(6)

2) Structure for temporal variables: The temporal pre-
dictors used in this study include the time-related variables
and the weather feature. The time-related variables include
time-of-day, day-of-week and holiday indicators. The weather
feature is represented by the amount of precipitation. We create
a new variable vt = (dowt ,todt ,ht) that concatenates dowt , todt
and ht , and use pt to represent the amount of precipitation at
time t. These temporal features are likely to impact the TNC
demand across the whole region. Then the network for the
time-series variables can be written as follows:

(Vt−d ,Vt−d+1, ...,Vt−1) = LL...L1(vt−d ,vt−d+1, ...,vt−1,vt)

X̂ v
t = F

R
(wvxVt−1+bv)

(Pt−d ,Pt−d+1, ...,Pt−1) = LL...L1(pt−d , pt−d+1, ..., pt−1)

X̂
p

t = F
R
(wpxPt−1+bp)

(7)

where Vt−d and Pt−d , k = 1,2, ...,d are the output tensors
at the last layer of the stacked LSTM layers for the time
variables and the precipitation variable. wvx and wpx denote
the fully connected layers following the stacked LSTM
layers, which reduce the number of output channel to 1.
FR denotes a reshaping function that repeat a value across
the space: FR ∶ R → RM∗N∗1, where (FR)m,n,1 = x for any
m ∈ (1,2, ...,M),n ∈ (1,2, ...,N). FR is deployed to make the
dimensions of the LSTM outputs X̂v and X̂p the same with
the SAC-LSTM output X̂u.

3) Fusion: The final estimated TNC demand at time t is a
weighted combination of the estimated outputs from different
parts of the network, which is given by:

X̂t =Wu ○X̂
u
t +Wq ○X̂

q
t +Wv ○X̂

v
t +Wp ○X̂

p
t (8)

E. Accuracy and fairness metrics

The performance of the various models is evaluated based
on two types of metrics: the accuracy metrics and the fair-
ness metrics. Two commonly used accuracy metrics - Mean
Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) - are adopted to evaluate the prediction accuracy of
the models in this work. They are defined as below:

MAE =
1

N ×T

T

∑
t=1

N

∑
i=1
∣yi

t − ŷi
t ∣ (9)

MAPE =
1
T

T

∑
t=1

1
∣Nt ∣
∑

i∈Nt

∣
yi

t − ŷi
t

yi
t
∣, Nt = {i ∶ 1 ≤ i ≤N, yi

t > 0.1}

(10)

where yi
t and ŷi

t are the real and predicted travel demands at
time interval t in region i. T represents the total number of
time intervals. N represents the total number of regions. Nt
denotes the set of regions with yi

t > 0.1, which is defined to
guarantee that the denominator of the absolute percentage
error for the regions included is not zero.

While MAE and MAPE have been widely utilized to measure
the accuracy of the model predictions, one limitation of these
two metrics is that they do not consider the directions of the
errors. Given that the underestimations and overestimations
of the TNC demand predictions have very different practical
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implications which should not be ignored, we also examine
the Mean Percentage Error (MPE) of the model predictions
which is given by:

MPE =
1
T

T

∑
t=1

1
∣Nt ∣
∑

i∈Nt

yi
t − ŷi

t

yi
t

, Nt = {i ∶ 1 ≤ i ≤N, yi
t > 0.1}

(11)

The positive value of MPE indicates the underestimation
of the TNC demand (i.e. the real demand is larger than
the predicted demand), whereas the negative value of MPE
indicates the overestimation of the TNC demand. The
magnitude of a positive percentage error in region i at time
t can be thought of the chance of an individual in region
i at time t who had the TNC demand but failed to receive
the service, if the TNC service was exactly allocated based
on the TNC demand estimation. Therefore, it is important
to make sure that the MPE is not systematically different
between the disadvantaged and privileged communities. This
concept is connected to one important notion of algorithmic
fairness – equality of odds, which states that a predictor Ŷ
satisfies equalized of odds with respect to protected attribute
Z and outcome Y, if Ŷ and Z are independent conditional on
Y [53].

We propose the MPE gap as a fairness metric, which measures
the difference of MPE between two groups (e.g. the black
communities and the non-black communities). The metric is
defined as:

MPE Gap =
1
T

T

∑
t=1

1
∣Nt,z0 ∣

∑
i∈Nt,z0

yi
t − ŷi

t

yi
t

−
1
T

T

∑
t=1

1
∣Nt,z1 ∣

∑
i∈Nt,z1

yi
t − ŷi

t

yi
t

s.t. Nt,z0 = {i ∶ 1 ≤ i ≤N, yi
t > 0.1, i ∈ Z0},

Nt,z1 = {i ∶ 1 ≤ i ≤N, yi
t > 0.1, i ∈ Z1}

(12)

where Z0 denotes the minority group and Z1 denotes the
majority group. Therefore, i ∈ Z0 represents the set of regions
that are within the minority group, and i ∈ Z1 represents the
set of regions that are within the majority group (i.e. not
within the minority group). For example, if the sensitive
variable of interest is ethnicity and Z0 is used to represent
the black-dominated communities, then Z1 represents the
non-black communities. In this case, i ∈ Z0 and i ∈ Z1 denote
regions that belong to the black communities and those that
belong to the non-black communities, respectively.

To achieve a fair prediction, we want the absolute value of
MPE gap to be as close to zero as possible. A positive value
of MPE gap indicates that we are underestimating the TNC
demand for the minority group compared with the majority
group, whereas a negative value of MPE gap suggests a relative
underestimation of the demand for the majority group.

F. De-biasing objective function

To jointly train for accuracy and fairness, we use a loss
function that is a weighted sum of an accuracy loss and a
fairness loss defined as below:

L = Laccuracy+ γL f airness (13)

The accuracy loss is aimed at reducing both MAE and MAPE:

Laccuracy =
T

∑
t=1

N

∑
i=1
(yi

t − ŷi
t)

2
+λ

T

∑
t=1
∑

i∈Nt

(
yi

t − ŷi
t

yi
t
)

2, (14)

s.t. Nt = {i ∶ 1 ≤ i ≤N, yi
t > 0.1} (15)

where yi
t and ŷi

t are the real and predicted travel demands at
time interval t in region i. T represents the total number of
time intervals. N represents the total number of regions. Nt
denotes the set of regions with yi

t > 0.1. λ is a regularization
parameter balancing the MAE and MAPE tradeoff. In this
study, we fix λ to be 10 since the magnitude of MAE is
roughly ten times that of MAPE.

The fairness loss is proposed as the following:

L f airness = ∣
T

∑
t=1
∑

i∈Nt

z̃i
∗

yi
t − ŷi

t

yi
t
∣, s.t. z̃i

=
zi− z̄
σz

, (16)

s.t. z̃i
=

zi− z̄
σz

, Nt = {i ∶ 1 ≤ i ≤N, yi
t > 0.1} (17)

where zi denotes the value of the sensitive attribute (e.g.
the proportion of black population) for region i. z̃i is the
normalized zi with z̄ and σz respectively representing the
mean and standard deviation of zi across all regions.

L f airness measures the linear relationship between the sensitive
attribute z and MPE across time and space. To be specific,
z̃i ∗

yi
t−ŷi

t
yi

t
measures the joint deviations of z̃i and yi

t−ŷi
t

yi
t

from
zero. Therefore, L f airness indicates the covariance between z
and MPE in the prediction, which we want to penalize in our
training process.

V. EXPERIMENTS

A. Data Description

The dataset utilized in this paper is a large-scale TNC
trip record dataset collected from Chicago Data Portal [59]
during a 14-month period between November 1st, 2018 to
December 23rd, 2019. The trip records that started from 6
AM to 10 PM are included. We partition the city of Chicago
into 1km×1km grids, and use totally 35×5 grids for analysis
as shown in Figure 4. The hourly TNC demand in a region is
represented by the number of trips starting from that region
in a 1-hour time interval. The weather data is collected
from the website of National Centers for Environmental
Information [54]. The socio-demographic variables including
the percentages of black population and the percentage of
low-income population are extracted from the 2019 American
Community Survey(ACS) 5-year estimates [60].



8

Figure 4 illustrates the distributions of average hourly
TNC demand in the study period, the percentage of black
population and the percentage of low-income population in
the study area. From Figure 4a, we can see that the spatial
distribution of the TNC demand is highly uneven, as the
downtown area takes up the majority of the TNC demand. In
terms of ethnicity, Figure 4b reveals a bimodal distribution
of African-American population, with the majority of the
northern area having African-American population below
13% and the majority of the southern area having African-
American population above 88%. We define population with
2019 household income lower than $25,000 as low-income,
and Figure 4c shows that the low-income population is also
mainly clustered in the south side of the study area. In this
study, we define grids with over 50% of black population
as the black communities, and the rest as the non-black
communities, which gives us 73 black communities and
102 non-black communities. Regarding income, we defined
grids with more than 25% of low-income population as the
low-income communities, and the rest as the high-income
communities, resulting in totally 90 low-income communities
and 85 high-income communities. In both cases, the numbers
of disadvantaged and privileged communities are roughly
balanced.

Figure 5 illustrates the average TNC travel demand by time of
day, separated by the disadvantaged (black/low-income) and
privileged (non-black/high-income) communities. The travel
demand in the privileged regions are much larger than that
in the disadvantaged regions, therefore the y-axis scales are
different in Figure 5(a) and Figure 5(b). The privileged regions
and the low-income communities have two peak periods:
7 AM - 10 AM and 5 PM - 8 PM, whereas the black
communities only has the morning peak.

In the experiment, we apply a 70-30 training-testing split. The
data from November 1st, 2018 to July 23rd, 2019 (265 days)
is used for training, the data from July 24th, 2019 to August
21st, 2019 (29 days) is used for validation and the data from
August 22nd, 2019 to December 23rd, 2019 (124 days) is used
for testing. In the training, validation and testing processes, we
use the TNC demand in the previous 6 hours to predict the
TNC demand in the next hour (i.e. the look-back window is 6
hours). In addition, we assess the robustness of our modeling
results by utilizing data aggregated into 30-minute intervals.
In this new prediction task, we leverage the TNC demand
observed in the preceding 3 hours to forecast the TNC demand
for the subsequent half hour. The findings from this analysis
are presented in Appendix A. Before training the models, the
collected data is normalized by z-score process to facilitate
training. We later denormalize the prediction to get the actual
demand values, and reset the negative values to zeros since
the demand values cannot be negative.

B. Model Comparison
To explore the advantage of our model SA-Net, we compare

it against several other benchmark models, which are listed as
follows:

● Historical Average (HA): HA predicts the TNC demand
by averaging the historical demand which is in the same
relative time interval (i.e. the same time of day and the
same day of week) in the training set. For instance, the
TNC demand in Monday 10 AM -11 AM is predicted
as the average TNC demand of all past Monday’s at 10
AM -11 AM in the training set.

● Moving Average (MA): MA predicts the TNC demand
by averaging the demand in the same relative time
interval of several nearest historical values. We use the
average of 6 previous TNC demand in grid (i, j) to
predict the demand in grid (i, j).

● Autoregressive Integrated Moving Average Model
(ARIMA): ARIMA is commonly used for forecasting
time-series data [61], and has been widely applied in
traffic prediction problems[62, 63]. In this work, to
predict the TNC demand in grid (i, j), the inputs to
ARIMA were 6 previous demand in the same relative
time interval in grid (i, j).

● LSTM Net: The LSTM Net processes the TNC demand
in each grid separately. The hyperparameters and the
structures of the LSTM Net and the SA-Net are the same.
The only difference is that while we use a stack of SAC-
LSTM to process the spatial-temporal data as shown in
Figure 3, the LSTM Net uses the LSTM modules to
processes the TNC demand data and does not capture
spatial dependencies.

● LSTM + Social Net: The LSTM + Social Net adds
a socio-demographic feature map to the LSTM Net to
facilitate predictions. The feature map is constructed
as a linear combination of different socio-demographic
variables as shown in Figure 2, and is fused with other
parts of the network in the last model layer following
Equation 8.

● Spatiotemporal Graph Convolution Network
(STGCN) [64]: STGCN is a widely compared state-of-
the-art model for spatial temporal modeling. It applies
a GCN-based method to model spatial correlations
with spectral-based GCNs and captures temporal
dependencies with temporal convolution layers (TCNs).

● Graph Wavenet [65]: Graph Wavenet follows a simi-
lar GCN and gated TCNs frameworks as STGCN but
with adaptive dependency matrix learning. The model
performs well in the traffic forecasting task with high
accuracy and fast convergence speed.

● Conv-LSTM Net: The Conv-LSTM Net is a fusion con-
volutional LSTM specified in [3]. The hyperparamters
and the structure of the Conv-LSTM Net are the same
with the SA-Net and the LSTM Net. The difference
is that the Conv-LSTM Net uses the traditional Conv-
LSTM modules instead of the SAC-LSTM modules in
Figure 3 to process the spatial-temporal TNC demand
data.

● Conv-LSTM + Social Net: Similar to the LSTM +
Social Net, the Conv-LSTM + Social Net adds a socio-
demographic feature map to the Conv-LSTM Net to
facilitate predictions.
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(a) Average hourly TNC demand (b) Percentage of black population (c) Percentage of low-income population

FIGURE 4 : Distributions of TNC demand, black population and low-income population in the study area

(a) Disadvantaged regions (b) Privileged regions

FIGURE 5 : Average TNC travel demand by time of day

C. Experiment setup

When training Conv-LSTM Net and SA-Net, we use kernels
with size of 3 × 3. Each Conv-LSTM cell and each SAC-
LSTM cell consists of 32 filters/channels to capture the spatial
information. The experiments are implemented in Pytorch
using the mini-batch stochastic gradient descent method with
a batch size of 64 and a step size of 0.001 in each training.
The model that produces the lowest prediction loss on the
validation set among the 300 epochs is chosen. To determine
the best performing model, both Conv-LSTM Net and SA-Net
are trained with 1, 2, and 3 layers, selecting the model that
yields the lowest prediction loss. For STGCN, the model is
trained with graph convolution kernel sizes of 2 and 3, as well
as temporal kernel sizes of 2 and 3. For Graph Wavenet, we
utilize the open-source codes provided by the original authors,
employing their default parameter settings. The model with the
lowest prediction loss is chosen as the optimal model, which
is then used for prediction on the test data. The optimal model

later performs prediction over the test data. We run the training
procedure 3 times and report the average prediction results on
the test set.

D. Results
We compare our proposed algorithms (SA-Net with

bias-mitigation regularization) with baseline models along
two dimensions: accuracy and fairness, and show that our
algorithm achieves better results regarding both accuracy
and fairness. The better prediction accuracy is demonstrated
by lower MAE and MAPE compared with baseline models.
Our proposed bias mitigation strategy demonstrates improved
prediction fairness by effectively reducing the MPE gap
between disadvantaged and privileged groups. Importantly,
this reduction in bias does not compromise the overall
prediction accuracy, allowing us to achieve fairness in our
predictions. In the following sections, we present the results
obtained from data aggregated to one-hour intervals. The
corresponding results obtained from data aggregated to
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30-minute intervals are included in the Appendix A.

1) Prediction accuracy: The spatial-temporal deep
learning algorithms (i.e. STGCN, Wavenet, Conv-LSTM
Net, Conv-LSTM + Social Net and SA-Net) outperform
the classical statistical models (i.e. HA, MA, ARIMA), and
our proposed SA-Net model produces the smallest overall
MAE, RMSE, and MAPE among all models on the test set.
Table I presents the overall MAE, RMSE, and MAPE, along
with the MAE specifically for black, non-black, low-income,
and high-income communities when the data is aggregated
to one-hour intervals. Regarding the overall MAE, RMSE,
and MAPE, Conv-LSTM Nets and SA-Net significantly
outperform other models. Conv-LSTM + Social Net shows
a slight improvement over Conv-LSTM Net in terms of
MAE and RMSE, but performs worse in terms of MAPE.
This finding suggests that incorporating socio-demographic
variables as predictors does not significantly enhance the
model’s performance. Next, we compare the results of
Conv-LSTM Net with SA-Net.

When comparing Conv-LSTM Net and SA-Net, we observe
that SA-Net effectively decreases MAE for both the black and
non-black communities. Furthermore, it also reduces MAE for
both the low-income and high-income communities. These
findings suggest that the inclusion of socio-demographic
information in SA-Net yields benefits for both disadvantaged
and privileged groups.

SA-Net improves prediction accuracy for the black
communities at all times of day compared with Conv-LSTM
Net. We examine the model performance for Conv-LSTM
Net and SA-Net across different times of day in Figure 6.
The upper row of Figure 6 shows the predictive results for
the black communities, whereas the bottom row of Figure
6 shows the results for the non-black communities. Figures
6a, 6b, 6d, and 6e illustrate that SA-Net yields lower MAE
during the morning peak hours (6 PM - 8 PM), as well as
reduced MAPE across all times of the day, compared to
Conv-LSTM Net for the black and non-black communities.

Figure 6c shows the MPE for the black communities at
various times of day. The MPEs are consistently positive,
indicating that both Conv-LSTM Net and SA-Net underpredict
the travel demand for the black communities at different
times of day. However, SA-Net consistently gives smaller
MPEs than Conv-LSTM Net, showing that the former model
reduces the magnitude of the underprediction of the black
communities’ travel demand. The MPEs for the non-black
communities with Conv-LSTM Net and SA-Net are more
similar at different times of day as shown in Figure 6f.

2) Prediction fairness: Having demonstrated the
superiority of our proposed SA-Net over the benchmark
models in terms of prediction accuracy, we now test the
effectiveness of our bias mitigation strategy stated in Section
IV-F for fairness improvement. First, we test the results
when the sensitive attribute is race, namely when z denotes

the proportion of black population in Equation 16. Table II
presents the results, and Figures 7a and 7b plot MPE for
black and non-black groups as well as the overall MAE. Table
II shows that when the de-biasing regularizer is not applied
(γ = 0), both Conv-LSTM Net and SA-Net produce large
MPE gaps between black and non-black groups. Specifically,
the MPE gap (race) with γ = 0 is 0.306 for Conv-LSTM
Net, whereas the MPE gap (race) with γ = 0 is 0.224 for
SA-Net. For both models, the large MPE gap comes from a
large, positive MPE for the black group and a small, negative
MPE for the non-black group. Note that the magnitude of
a positive MPE indicates the degree of underestimation of
the demand, since MPE represents the average gap of the
actual and predicted demand weighted by the actual demand.
Larger the MPE, higher the underestimation. Therefore, the
large MPE gaps between black and non-black groups indicate
that training models using the traditional objective function
without bias mitigation leads to systematic underestimation
for the black group compared with the non-black group.

Recognizing the prediction bias using only Laccuracy in
training, we adopt bias mitigation by increasing the bias
mitigation weight γ from 0 to 5 and 10. The results for
“MPE gap (race)” in Table II show that for both models, as γ

increases, the MPE gap between black and non-black groups
decreases, and this reduction in MPE gap mainly stems
from the reduction in MPE for the black group. Specifically,
when increasing γ from 0 to 10, the MPE gap between the
black and non-black groups drops from 0.306 to 0.040 for
Conv-LSTM Net, and drops from 0.224 to 0.074 for SA-Net.
It is also found that by mitigating the racial bias, the MPE
gap between the low-income and high-income groups has
also been reduced, probably because most low-income and
black communities are clustered in the south side of Chicago
(Figure 4), thus by mitigating bias for race, the prediction
bias (MPE gap) for income has been reduced simultaneously.

Figures 7a and 7b plot MPE for black and non-black groups
as well as the overall MAE corresponding to Table II. As we
increase the bias mitigation weight (γ), the prediction MPEs
for the black population (denoted by the green bars) decrease
considerably, indicating that with the bias mitigation loss
function, the underestimation of TNC demand for the black
population has been mitigated. Additionally, the MAE also
decreases as the bias mitigation weight increases.

Then, we apply the same bias mitigation strategy to mitigate
the MPE gap between the low-income and high-income
groups. In this case, z denotes the proportion of low-income
population in Equation 16. The results for “MPE gap
(income)” in Table III show that similar to the bias mitigation
results for race, the MPE gaps generally decline as γ increases
when mitigating the income bias for both Conv-LSTM Net
and SA-Net. Specifically, when γ increases from 0 to 10, the
MPE gap between the low-income and high-income groups
decreases from 0.136 to 0.026 for Conv-LSTM Net, and
decreases from 0.113 to -0.001 for SA-Net. The MPE gaps
between two income groups are also plotted in Figure 7c and
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(a) MAE: black (b) MAPE: black (c) MPE: black

(d) MAE: non-black (e) MAPE: non-black (f) MPE: non-black

FIGURE 6 : Performance measures by model and time of day

(a) Conv-LSTM Net: race (b) SA-Net: race

(c) Conv-LSTM Net: income (d) SA-Net: income

FIGURE 7 : Performance measures by model and sensitive variable, corresponding to Table
II and Table III
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TABLE I : Accuracy comparisons among different models

MAE RMSE MAPE Black Non-black Low-income High-income
(MAE) (MAE) (MAE) (MAE)

HA 8.00 21.46 0.64 1.55 12.61 6.53 12.11
MA 7.93 22.04 0.55 1.41 12.60 6.49 11.96
ARIMA 7.16 19.81 0.54 1.36 11.31 5.93 10.60
LSTM Net 8.97 18.51 0.54 2.23 13.80 7.14 14.13
LSTM + Social Net 8.83 18.53 0.49 2.05 13.69 7.00 13.97
STGCN 6.59 14.26 0.59 1.58 10.17 5.27 10.29
Wavenet 6.30 14.53 0.50 1.63 9.64 5.09 9.69
Conv-LSTM Net 6.16 13.16 0.42 1.67 9.37 4.99 9.43
Conv-LSTM + Social Net 6.15 13.11 0.44 1.72 9.31 5.02 9.31
SA-Net 6.01 13.00 0.41 1.65 9.13 4.92 9.06

Note: for the deep learning models, we report the results when the models are trained with γ = 0

TABLE II : Fairness and accuracy comparisons with bias mitigation for race

MAE RMSE MAPE MPE gap Black Non-black MPE gap Low-income High-income
(race) (MPE) (MPE) (income) (MPE) (MPE)

Conv-LSTM Net:
γ = 0 6.159 13.163 0.420 0.306 0.275 -0.032 0.136 0.153 0.018
γ = 5 6.111 13.278 0.409 0.141 0.114 -0.026 0.041 0.048 0.006
γ = 10 6.042 13.265 0.408 0.040 0.023 -0.016 -0.016 -0.010 0.006
SA-Net:
γ = 0 6.006 12.998 0.408 0.224 0.192 -0.032 0.113 0.111 -0.002
γ = 5 6.002 13.190 0.406 0.066 0.048 -0.019 0.008 0.010 0.002
γ = 10 5.944 13.114 0.411 0.074 0.071 -0.002 0.005 0.028 0.023

Note: γ represents the bias mitigation weight

Figure 7d, where we can see that the de-biasing regularization
works well to reduce the MPE gap for both Conv-LSTM Net
and SA-Net.

In addition, we find that the improving prediction fairness
does not necessarily sacrifice prediction accuracy. The orange
dots in Figure 7 denote the MAEs produced by different
models, which show that the application of bias mitigation
actually also brings down MAE. Notably, when increasing the
mitigation weight γ for income from 0 to 10 for SA-Net, the
prediction accuracy has been greatly improved (MAE=6.006)
compared with the case when no bias mitigation is adopted
(MAE=5.944).

We also examine the change of average MPE in different
times of day with different bias mitigation strategies in
Figure 8. Figure 8a and 8d show that by increasing the bias
mitigation weight γ from 0 to 5 and 10, the MPE for the
black communities decreases in all times of day for both the
Conv-LSTM Net and the SA-Net, and the bias mitigation
effect is slightly stronger in the Conv-LSTM Net case. For the
Conv-LSTM Net, we observe that when γ = 10, the morning
peak MPE decreases to around zero, and the MPE in the
morning and evening peak periods becomes negative. On the
contrary, Figure 8b and 8e show that the effects of the bias
mitigation method on the MPE for the non-black communities
are relatively small. The increase of γ is associated with a

small drop of MPE in the Conv-LSTM Net case and a small
rise of MPE in the SA-Net case. Figure 8c and 8f plot the
gaps in MPE between the black and non-black communities
given by Conv-LSTM Net and SA-Net, which show that for
all times of day, increasing the bias mitigation weight from
zero reduces the MPE gap between the black and non-black
communities. All in all, our results suggest that our proposed
bias mitigation strategy can significantly mitigate the travel
demand underprediction issue for the black communities in all
times of day with both the Conv-LSTM Net and the SA-Net,
and can effectively reduce the prediction bias between the
black and non-black groups.

In summary, our proposed de-biasing regularization method
can considerably reduce the prediction bias measured by the
MPE gap between the disadvantaged and the privileged groups
for both Conv-LSTM Net and SA-Net. This gain in prediction
fairness can be achieved while keeping the prediction accuracy
high. For SA-Net, adopting bias mitigation can even increase
prediction accuracy.

3) Spatial patterns of errors: To better understand the
spatial heterogeneity of the prediction errors, we show in
Figure 9 the spatial distributions of MPE using SA-Net for
three prediction strategies: prediction with no bias-mitigation,
with race bias mitigation (γ = 5) and with income bias
mitigation (γ = 5). Areas with positive MPE (indicating that
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TABLE III : Fairness and accuracy comparisons with bias mitigation for income

MAE RMSE MAPE MPE gap Black Non-black MPE gap Low-income High-income
(race) (MPE) (MPE) (income) (MPE) (MPE)

Conv-LSTM Net:
γ = 0 6.159 13.163 0.420 0.306 0.275 -0.032 0.136 0.153 0.018
γ = 5 6.108 13.423 0.411 0.142 0.112 -0.030 0.025 0.037 0.012
γ = 10 6.062 13.352 0.401 0.174 0.158 -0.016 0.026 0.062 0.036
SA-Net:
γ = 0 6.006 12.998 0.408 0.224 0.192 -0.032 0.113 0.111 -0.002
γ = 5 6.010 13.150 0.407 0.192 0.167 -0.025 0.056 0.076 0.020
γ = 10 6.000 13.112 0.413 0.108 0.061 -0.047 -0.001 -0.007 -0.006

Note: γ represents the bias mitigation weight

(a) Conv-LSTM Net: black (b) Conv-LSTM Net: non-black (c) Conv-LSTM Net: MPE gap (black v.s.
non-black)

(d) SA-Net: black (e) SA-Net: non-black (f) SA-Net: MPE gap (black v.s. non-black)

FIGURE 8 : MPE for different racial groups with different mitigation weights (γ) by time of day

the TNC demand has been underestimated) are denoted by
the red color, whereas areas with negative MPE (indicating
demand overestimation) are denoted by the blue color. Figure
9a shows that when no bias mitigation is adopted, the south
side of the study area, which has greater populations of low-
income and African-American people, suffers from severe
demand underestimation. When we add the bias mitigation
for race and income, the results in Figure 9b and Figure 9c
show that the grid colors in the southern areas have become
much lighter, and the colors of several areas in the south
switch from red to blue, suggesting that the underestimation
issue has been remarkably alleviated.

VI. ABLATION ANALYSIS

To gain a deeper insight into the performance of SA-Net
concerning the different employed features, we conduct an
ablation analysis on each feature group. In this series of

experiments, we systematically remove individual feature
groups from the complete set and evaluate the resulting
performance. Common intuition suggests that removing a
crucial feature group would result in a notable decline in
performance. Figure IV shows that transit service supply is
the most important feature regarding MAE and RMSE, as
removing this feature will lead to the largest increase in MAE
and RMSE. Employment is the second important feature in
terms of contribution to MAE. Removing employment will
also lead to the largest increase in MAPE.

It can be observed that each feature contributes to the pre-
diction, as none of them individually outperforms the model
with the complete feature set. Furthermore, when different
ablation strategies are applied, MAEs for black, non-black,
low-income, and high-income groups are similar in scale.
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(a) No bias mitigation (b) Bias mitigation for race (c) Bias mitigation for income

FIGURE 9 : Spatial distributions of mean percentage errors using SA-Net for different bias mitigation strategies

TABLE IV : Ablation analysis of feature set

Feature group MAE RMSE MAPE Black Non-black Low-income High-income
(MAE) (MAE) (MAE) (MAE)

Transit service supply 6.28 13.56 0.41 1.71 9.55 5.14 9.49
Employment 6.13 13.09 0.43 1.74 9.27 5.00 9.30
Ethnicity 6.08 13.49 0.39 1.63 9.26 4.96 9.21
Gender 6.07 13.04 0.42 1.64 9.24 4.92 9.30
Income 6.04 12.82 0.41 1.67 9.17 4.93 9.16
Population 6.04 12.90 0.41 1.71 9.14 4.93 9.15
Precipitation 6.04 13.16 0.41 1.68 9.16 4.91 9.19
Travel modes 6.03 13.06 0.41 1.63 9.18 4.91 9.18
Age 6.03 13.17 0.40 1.65 9.17 4.92 9.15
Time indicators 6.01 12.86 0.41 1.68 9.11 4.92 9.06
Foreign 6.01 13.15 0.40 1.63 9.15 4.91 9.11
Education 6.01 13.14 0.40 1.63 9.15 4.90 9.12

Note: “Population” includes total population and population per squared kilometers; “Foreign” includes
the percentage of spanish speakers and the percentage of foreign-born population; “Travel modes” include
the percentage of transit commuters and the percentage of population with no household vehicles. “Time
indicators” include time-of-day, day-of-week, and holiday indicators.

VII. SENSITIVITY ANALYSIS

In this section, we perform a sensitivity analysis and
parameter tuning on SA-Net. We investigate three types of
parameters: the bias mitigation weight (λ ), the kernel size,
and the number of output channels (OLn ). Our benchmark
model is set with λ = 10, kernel size = 3, and 32 filters.
For each trial, we vary the value of one of these three
parameters while keeping the other two parameters the same
as the benchmark model. The results on the validation set are
reported in Table V for reference.

When examining the parameter λ , we observe that as λ

increases, the RMSE also increases, while MAPE generally
decreases. After careful consideration, we choose λ = 10 as
it strikes a good balance between MAE and MAPE. For the
kernel size, we evaluate both 3 and 5 and find that a kernel
size of 3 yields better results in terms of MAE and MAPE.
Regarding the number of filters in the convolutional units, we
discover that using 32 filters produces the best outcome in

terms of MAE and RMSE. Overall, the results demonstrate
that our benchmark model provides the optimal performance
based on the metrics evaluated.

VIII. DISCUSSION AND CONCLUSIONS

Fairness has long been a critical concern in transportation
studies. However, the prediction fairness issue in spatial-
temporal travel demand forecasting has been neglected in
previous literature. In this paper, we propose a two-pronged
approach to enhance fairness in TNC demand forecasting, and
test the effectiveness of our innovative method on Chicago’s
TNC data.

First, though previous studies have shown that there
is significant difference in travel characteristics across
demographic groups [66, 67, 68], most spatial-temporal
research failed to account for the socio-demographic
heterogeneity in travel demand predictions. We introduce
a novel model structure, SA-Net, designed to effectively
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TABLE V : Sensitivity analysis

MAE RMSE MAPE MAE RMSE MAPE

λ : Kernel size= 5 5.75 13.43 0.416
λ = 0 5.646 13.333 0.612 Number of output channels OLn :
λ = 5 5.726 13.464 0.424 OLn = 8 5.73 13.70 0.396
λ = 10 5.669 13.507 0.399 OLn = 16 5.79 13.87 0.395
λ = 100 5.945 13.996 0.368 OLn = 32 5.67 13.51 0.399
λ = 1000 6.413 14.135 0.399 OLn = 64 5.82 13.59 0.416
Kernel size: OLn = 128 5.68 13.53 0.389
Kernel size= 3 5.669 13.507 0.399

capture spatial correlations variations across various socio-
demographic groups. Experimental results affirm that our
proposed SA-Net substantially improves overall prediction
accuracy by effectively integrating socio-demographic and
contextual information, such as transit service information,
weather data, and time indicators. To achieve this, the SA-Net
incorporates the Socially-Aware Convolution (SAC) module,
which adapts the standard invariant kernel based on the socio-
demographic composition of each area within the study region.

Specifically, the SA-Net demonstrates notable improvements
in performance compared to the best benchmark model,
Conv-LSTM Net, across various evaluation metrics. During
the morning peak hours (6 AM - 8 AM), SA-Net achieves
lower MAE, and it consistently exhibits reduced MAPE
throughout the day. Furthermore, when examining the
predictions for both black and non-black communities,
SA-Net yields MPEs that are closer to zero than Conv-LSTM
Net, indicating that it effectively mitigates underestimation for
the black communities. Additionally, our findings underscore
the significance of transit service level and employment
information as the most influential features contributing to
the enhanced prediction accuracy achieved by SA-Net.

Second, in our analysis, we uncover a prevalent issue
in previous solutions for spatial-temporal travel demand
prediction: the tendency to underestimate demand in low-
demand regions. This arises due to the significant impact
of high errors in these areas on MAPE, which results in a
bias towards optimizing MAPE at the expense of accurate
predictions in low-demand regions. To address this challenge,
we propose a novel approach that employs the mean
percentage error gap as a measure of prediction fairness.
Additionally, we introduce a regularization method designed
to mitigate bias between disadvantaged and privileged groups.
This is accomplished by disentangling the correlation between
the sensitive attribute and the mean percentage error.

Our experimental results strongly confirm the efficacy of the
new algorithm in effectively mitigating prediction bias for
both the traditional Conv-LSTM Net and the newly proposed
SA-Net. Moreover, our findings demonstrate that the method
excels at protecting disadvantaged regions against systematic
underestimation. Specifically, our proposed bias mitigation
strategy significantly mitigates the issue of travel demand
underprediction for the black communities across all times of
day, thus ensuring fairer predictions.

Overall, we argue that the prediction bias issue revealed in this
work should attract the attention of the researchers and policy
makers, because if the travel demand in the disadvantaged
neighborhoods is systematically underpredicted, we may fail
to provide enough TNC services to these communities, and
the limited services will in turn lead to further decrease
of the ridership, which will eventually lead to a negative
feedback loop. The method proposed in this study has been
proven to be capable of tackling this prediction bias issue
and promoting both accuracy and fairness. This has practical
implications for policymakers and transportation planners,
as it helps ensure equitable access to TNC services for all
communities, including those historically underserved or
underpredicted. This can contribute to reducing transportation
inequities and enhancing social inclusion.

We identify several future research directions worth investigat-
ing. First, this paper evaluates fairness in travel demand predic-
tion and demonstrates the utility of the de-biasing mitigation
method on Conv-LSTM Net and the SA-Net. However, the
proposed fairness evaluation metrics and the bias mitigation
method are widely applicable. They can also be applied to
other spatial-temporal deep learning networks such as the
spatial-temporal residual networks ST-ResNet [69] and RSTN
[10]. Second, this study aims to implement fair predictions
for on-demand ride service. However, our proposed fairness-
enhancing method should also work well for other spatial-
temporal settings, such as bikeshare demand prediction, public
transport demand prediction and crime incidents prediction.
Future research can test the performance of the proposed
method on various downstream applications. Third, we test our
method on Chicago’s TNC data as the real-world application.
Future work can study the transferability of our method to
other applications or cities.

APPENDIX A
EXPERIMENTS WITH DATA AGGREGATED TO 30-MINUTE

INTERVALS

In this section, we test the robustness of our results by
conducting experiments on data aggregated into 30-minute
intervals. Table VI presents the overall MAE, RMSE, and
MAPE, along with the MAE specifically for different social
groups. Consistent with the outcomes obtained from data
aggregated into one-hour intervals, our findings indicate that
SA-Net consistently achieves the lowest overall MAE and
MAPE. This underscores the enhanced prediction accuracy
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achieved by employing SA-Net.

We proceed to present the results with bias mitigation for race
in Table VII, and the results with bias mitigation for income
in Table VIII. The findings demonstrate the effectiveness of
the two bias mitigation strategies in addressing bias related
to the corresponding sensitive attributes. Consistent with the
results obtained from data aggregated to one-hour intervals, we
observe that the MAE is further improved in SA-Net when the
bias mitigation approach is implemented.
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TABLE VI : Accuracy comparisons among different models (data aggregated to 30-minute intervals)

MAE RMSE MAPE Black Non-black Low-income High-income
(MAE) (MAE) (MAE) (MAE)

HA 4.48 11.35 0.70 0.99 6.99 3.65 6.82
MA 4.49 11.68 0.62 0.92 7.05 3.66 6.83
ARIMA 4.03 10.42 0.61 0.88 6.28 3.32 6.02
LSTM Net 4.39 8.63 0.47 1.18 6.68 3.48 6.94
LSTM + Social Net 4.39 8.60 0.47 1.16 6.70 3.47 6.96
STGCN 3.57 7.29 0.67 1.02 5.40 2.86 5.57
Wavenet 3.47 7.45 0.48 0.98 5.26 2.78 5.40
Conv-LSTM 3.44 6.84 0.41 1.06 5.14 2.78 5.29
Conv-LSTM + Social Net 3.46 6.79 0.43 1.07 5.17 2.80 5.30
SA-Net 3.43 6.85 0.41 1.06 5.13 2.79 5.23

Note: for the deep learning models, we report the results when the models are trained with γ = 0

TABLE VII : Fairness and accuracy comparisons with bias mitigation for race (data aggregated to 30-minute intervals)

MAE RMSE MAPE MPE gap Black Non-black MPE gap Low-income High-income
(race) (MPE) (MPE) (income) (MPE) (MPE)

Conv-LSTM Net:
γ = 0 3.442 6.842 0.413 0.373 0.422 0.049 0.215 0.292 0.077
γ = 5 3.473 6.865 0.425 0.226 0.284 0.058 0.104 0.191 0.086
γ = 10 3.456 6.896 0.446 0.064 0.069 0.006 0.037 0.047 0.010
SA-Net:
γ = 0 3.429 6.852 0.408 0.341 0.391 0.051 0.193 0.270 0.078
γ = 5 3.454 6.862 0.417 0.305 0.365 0.060 0.162 0.251 0.089
γ = 10 3.415 6.896 0.415 0.031 0.063 0.032 0.004 0.045 0.041

Note: γ represents the bias mitigation weight

TABLE VIII : Fairness and accuracy comparisons with bias mitigation for income (data aggregated to 30-minute intervals)

MAE RMSE MAPE MPE gap Black Non-black MPE gap Low-income High-income
(race) (MPE) (MPE) (income) (MPE) (MPE)

Conv-LSTM Net:
γ = 0 3.442 6.842 0.413 0.373 0.422 0.049 0.215 0.292 0.077
γ = 5 3.462 6.833 0.434 0.256 0.307 0.051 0.104 0.194 0.090
γ = 10 3.499 6.924 0.434 0.168 0.238 0.070 0.026 0.141 0.115
SA-Net:
γ = 0 3.429 6.852 0.408 0.341 0.391 0.051 0.193 0.270 0.078
γ = 5 3.427 6.813 0.427 0.383 0.448 0.065 0.188 0.297 0.109
γ = 10 3.422 6.813 0.412 0.235 0.299 0.064 0.082 0.188 0.106

Note: γ represents the bias mitigation weight
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